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|

X. A Disquisition on the Stability of Ships. By George
Atwood, Esq. F.R. S.

Read March 8, 1798.

Tae stability of vessels, by which they are enabled to carry
a sufficient quantity of sail, without danger or inconvenience,
is reckoned amongst their most essential properties ; although
the wind may, in one sense, be said to constitute the power
by which ships are moved forward in the sea, yet, if it acts on
a vessel deficient in stability, the effect will be to incline the
ship from the upright, rather than to propel it forward: sta-
bility is therefore not less necessary than the impulses of the
wind are, to the progressive motion of vessels. This power has
also considerable influence in regulating the alternate oscil-
lations of a ship in rolling and pitching; which will be smooth
and equable, or sudden and irregular, in a great measure, ac-
cording as the stability is greater or less at the several angles
of inclination from the upright. From constantly observing
that the performance of vessels at sea depends materially on

their stability, both navigators and naval architects must, at all
MDCCXCVIIL. Dd
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times, be desirous of discovering in what particular circum~

* stances of construction this property consists, and according to
what laws the stability is affected by any varieties that may
be given to their forms, dimensions, and disposition of con-
tents ; which are determined partly according to the skill and
judgment of the constructor, and partly by adjustments after
the vessel has been set afloat.

Little more than a century has now elapsed, since the theory of
mechanics was first applied to the construction and management
of vessels; whatever principles had been previously adopted, for
regulating their forms and equipment, as well as for directing
them in the acean, were the result of experience and observation
alone: a mode of arriving at truth, however advantageous in
many respects, yet not entirely to be relied on in this instance,
for explaining satisfactorily, and reducing to system, pheno-
mena depending on the intricate combination of causes which
influence a vessel’s motion, and equilibrium, at sea. The theory *
of mechanics is known to explain all effects that can arise from
the action of forces, however complicated, of which the quan-
tities and directions are defined with sufficient precision. This
science, having been greatly extended, and successfully em-

“ployed, by Sir Isaac NEwTON, in the investigation of causes
requiring the most profound research, would naturally be re-
sorted to, for a solution of many difficulties that occur in the
theory of naval architecture, which could not be obtained from
any other mode of considering this subject. The practice of
ship building having been many ages antecedent to the dis~
eovery of the t:heory' of mechanics, one object of theoretic:
inquiry must necessarily be, to explain the principles of con-
struction and management which experience and practical
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observation have previously discovered ; distinguishing those
which are founded in truth and right practice, from others
which have been the offspring of vague and capricious opinion,
misinterpretation of facts, and unfounded conjecture, by which,
phenomena arising in. the practice of navigation are often at-
tributed to causes entirely different from those by which they
are really governed. It is also the object of mechanic theory
to investigate, from the consideration of any untried plans of
construction, what will be the effect thereef on the motion of
vessels at sea; also to suggest new combinations, by which
the approved qualities of vessels may be extended, their faults
amended, or defects supplied. These several objects, and others
cannected with them, have employed the attention of many
eminent theorists, by whose dlscoverles naval architecture has
been greatly benefited ; yet the progress made toward esta-
blishing a general theory, founded on the laws of motion, has
not been adequate to what might be expected from the abi-
lities of the writers on this subject, and the laborious attention
“they have bestowed upon it. Although all results deduced by
strict geometrical inference from the laws of motion, are
found, by actual experience, to be perfectly consistent with
matter of fact, when subjected to the most decisive trials, yet,
in the application of these laws to the subject in question, dif-
ficulties often occur, either from the obscure nature of the
conditions, or the intricate analytical operations arising from
them, which either render it impracticable to obtain a solu-
tion, or, if a result is obtained, it is expressed in terms so
involved and complicated, as to become in a manner useless,
as to any practical purpose. These imperfections in the theory
of vessels, are amongst the causes which have contributed to
Dde
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retard the progress of naval architecture, by increasing the
hazard of failure in attempting to supply its defects by expe-
riment ; for, when no satisfactory estimate can be formed
from theory, of the effects likely to.ensue from adopting any
alteration of construction that m‘ay be proposed, doubts must
necessarily arise respecting its success or failure, which can be
resolved only by having recourse to actual trial : a species of
experiment rarely undertaken under the impressions of uncer-
tain success, when the objects of it are so costly, and otherwise
of so much importance. To the imperfections of theory, may
also be attributed that steady adherence to practical methods,
rendered familiar by usage, which creates a disposition to re-
ject, rather than to encourage, proposals of innovation in the
construction of vessels : the defects or inconveniences which
are known, and have become easily tolerable by use, or may
perhaps be the less distinctly perceived for want of comparison
with more perfect works of art, being deemed preferable to
the adoption of projected improvements, attended by the dan-
ger of introducing evils, the nature and extent of which cannot
be fully known. These are amongst the difficulties and dis-
advantages which have concurred in rendering the progress of
improvement, in the art of constructing vessels, extremely slow,
and have left many imperfections in this practical branch of
science, which still remain to be remedied. In respect to the
theory of vessels, it would be giving that term too narrowed
a meaning, to consider it as derived solely from the laws of
mechanics ; every notion or opinion which may be applied to-
explain satisfactorily the phenomena depending on a vessel’s
construction and qualities, so as to infer the consequences of
given conditions, independently of actual trial, whether it ori-
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ginates from experience alone, or from investigations founded
on the laws of motion, is to be regarded as forming a part of
this theory, in which, a constant reference to practice is so
essentially necessary. For, although many principles are de-
ducible from the laws of mechanics, which it is probable that
no species of experiment, or series of observation, however
long continued, would discover, yet there are others, no less
important, which have been practically determined with suf-
ficient exactness, the investigation of which it is scarcely pos-
sible to infer from the laws of motion; the complicated and
ill defined nature of the conditions, in particular instances;
rendering analytical operations founded on them liable to un-
certainty. Since the practice of naval architecture depends so
materially on the knowledge of the causes which influence
the motion of vessels at sea, much benefit may probably be
derived from the extension of well founded principles, both by
attentive observation of the qualities of vessels, compared with
their construction, as well as by investigation of the effects
arising from particular modes of construction, depending on
the laws of statics and mechanics, whenever the conditions
admit of inferring principles which are clear and satisfactory,
and easily applicable in practice. With a view to these ob-
jects,  so far as regards the theory of stability, the ensuing
Disquisition has been written. ‘
When a ship, or other floating body, is deflected from its
quiescent position, the force of the fluid’s pressure operates to
restore the floating body to the situation from which it has been
inclined. This force is distinctly described, in a treatise written
by the most celebrated geometrician of ancient times, who
uses the following argument for demonstrating the position in
which a parabolic conoid will float permanently in given cir-
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cumstances. To shew that this solid will float with the axis
inclined to the fluid’s surface at a certain stated angle, depend-
ing on the specific gravity and dimensions of the solid, he de-
monstrates, * that if the angle should be greater than that which
he has assigned, the fluid’s pressure will diminish it; and that,
if the angle should be less, the fluid’s pressure will operate to
increase it, by causing the solid to revolve round an axis which
is parallel to the horizon. It is an evident consequence, that
the solid cannot float quiescent with the axis inclined to the
fluid’s surface, at any angle except that which is stated. The
force which is shewn in this proposition, to turn the solid, so
as to alter the inclination of the axis to the horizon, is the
same with the force of stability; the quantity or measure of
which, ARCHIMEDES does not estimate ; nor was it necessary
to his purpose, since the alteration of inclination required to
establish the quiescent position, may be produced either in a
greater or less time, without affecting his argument. It
does not appear, that this method of determining the float-
ing positions of bodies was afterwards extended to infer
similar conclusions in respect to solids of any other forms,
nor to determine any thing concerning the inclination or
equilibrium of ships at sea, which require the demonstration,
not only that a force exists, in given circumstances, to turn
the vessel round an axis, but also the magnitude or precise
measure of that force. M. BouGuEkr, in his treatise intitled
«¢ Traite du Navire,” 4 has investigated a theorem for esti-
mating the exact measure of the stability of floating bodies.
This theorem, in one sense, is general, not being confined to
bodies of any particular form ; but, in respect to the angles of

® ARCHIMEDES de iis qua in humido vebuntur. + Liyr. ii. sect. 2. chap. 8.
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inclination, it is restrained to the condition that the inclina-
tions from the upright shall be evanescent, or, in a practical
sense, very small angles. In consequence of this restriction,
the rule in question cannot be generally applied to ascertain
“the stability of ships at sea; because the angles to which they
are inclined, both by rolling and pitching, being of consider-
able magnitude, the stability will depend, not only on the con-
ditions which enter into M. BoucuEr’s solution, but also on
the shape given to the sides of the vessel above and beneath
the water-line or section, of which M. BoucuEgr’s theorem
takes no account. But it is certain that the quantity of sail a
ship is enabled safely to carry, and the use of the guns in
rough weather, depend in a material degree on the form of
the sides above and beneath the water-line ; this observation
referring to that portion of the sides only which may, be im-
mersed under, or may emerge above, the water’s surface, in
consequence of the vessel’s inclination ; for, whatever portion
of the sides is not included within these limits, will have no
effect on the vessel’s stability, the centres of gravity, volume
of water displaced, and other elements not being altered. ' By
the water-section is meant, the plane in which the water’s sur-
face intersects the vessel, when floating upright and quiescent
and the termination of this section in the sides of the vessel is
termed the water-line. A general theorem for determining
the floating positions of bodies is demonstrated in a former
paper, inserted in the Phil. Trans. for the year 1796, and ap-
plied to bodies of various forms: the same theorem is there
shewn to be no less applicable to the stability of vessels, taking
into account the shape of the sides, the inclination from: the
upright, as well as every other circumstance by which the
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stability can be influenced. To infer, from this theorem, the
stability of vessels in particular cases, the form of the sides,
and the angle of inclination from the perpendicular, must be
~given. These conditions admit of great variety, considering
the shape of the sides, both above the water-line and beneath
it; for we may first assume a case, which is one of the most
simple and obvious ; this is, when the sides of a vessel are pa-
rallel to the plane of the masts, both above and beneath the
water-line; or, secondly, the sides may be parallel to the masts
under the water-line, and project outward, or may be inclined
inward, above the said line; or they may be parallel to the
masts above the water-line, and inclined either inward or out-
ward beneath it ; some of these cases, as well as those which
follow, being not improper in the construction of particular
species. of vessels, and the others, although not suited to prac-
tice, will contribute to illustrate the general theory. The
sides of a vessel may also coincide with the sides of a wedge,
inclined to each other at a given angle ; which angle, formed
at an imaginary line, where the sides, if produced, would inter-
sect each other, may be situated either under or above the
water’s surface. To these cases may be added, the circular
form of the sides, and that of the Apollonian or conic para-
bola. The sides of vessels may also be assumed to coincide
with curves of different species and dimensions, some of which
approach to the forms adopted in the practice of naval archi-
tecture, particularly in the larger ships of burden. And lastly,
the shape of the sides may be reducible to no regular geome-
trical law ; in which case, the determination of the stability,
in respect to a ship’s rolling, requires the mensuration of the
ordinates of the vertical sections which intersect the longer
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axis at right angles; similar mensurations are also required
for determining the stability, in respect to the shorter axis,
round which a vessel revolves in pitching. - In order to de-
scribe distinctly these several cases, the variation of the sec-
tions, both in form and magnitude, from head to stern of the
vessel, has not been considered ; the sections being supposed
equal and similar figures, such as they in reality are, near the
greatest section of a ship, growing smaller, and altering their
form, toward the head and stern. But, before this alteration
can be taken into account, it is necessary first to ascertain the
stability corresponding to a vessel or segment, in which the
sections are equal and similar ﬁguresj from which determi-
nation, the stability is inferred which actually exists, when the
form and magnitude of the sections alter continually, from one
“extremity of the vessel to the other. The consideration of
the cases which have been here stated, with inferences and
observations thereon, is the subject of the ensuing pages; in
which, if any ideas are suggested which may be at all useful
in the practice of naval architecture, or inay contribute to
remove imperfect or erroneous notions which have been en-
tertained respecting a principal branch of it, the intention of
‘the Author will be accomplished.

Let WBCOFAH (Tab. VIII. fig. 1.) represent a vertical
section of a vessel ﬁoating quiescent and upright, and inter=
sected by the water’s surface in the line BA : BCOFA will be
the area immersed under water. Suppose the vessel to be in-
clined from the perpendicular, through the angle ASH, so
that the intersection of the vessel by the water’s surface, which

before coincided with BA; shall now coincide with the line
MDCCXCVIIL, Ee
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CH : the area under water will now be COFAH, equal to the
area BCOFA. A

- Let the section WBCOFAH, and all the other vertical sec-
tions intersecting the longer axis at right angles, be assumed
similar and equal figures, projected on the plane WBOAH : in
consequence, the area BOA will be to the area ASH, as the
entire volume immersed is to the volume immersed by the
vessel’s inclination. Moreover, if E is the centre of gravity of
the area BOA, that point will truly represent the centre of
gravity of the volume immersed, when the vessel is upright :
if the centre of gravity of the immersed area COFAH, when
the vessel is inclined, should be situated at Q, that point will
also coincide with the centre of gravity of the corresponding
displaced volume. For these reasons, the spaces BOA, ASH,
COFAH, will be denominated, in the following pages, indif-
ferently, areas or volumes. . '

Let G be the centre of gravity of the vessel, by which term,
the vessel and its contents, of every kind, are always under-
stood to be implied. Through G, draw G U parallel-to CH :
and through Q, draw QZ perpendicular to CH. When the
ship is inclined round the longer axis, through the angle ASH,
the fluid’s pressure acts in the direction of the vertical line
QZ, with a force equal to the vessel’s weight ; and the sta-
bility or effect of this force, to turn the vessel round an axis
passing through ‘G, perpendicular to the plane BOA, will be
greater or less, according to the magnitude of the line G Z,
or distance from the axis at which the force of pressure acts.
In the same vessel, the weight not being altered, the stability,
at different angles-of inclination from the upright, will be truly
measured by the line GZ; and, in different vessels, or in the
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same vessel differently laden, the stability will be measured
by the weight of the vessel and the line GZ jointly. The
weight of any vessel (including the lading) is equal to the
weight of water displaced by it; which will be obtained by
measuring the solid contents of the displaced volume, and
from knowing the weight of a given portion of sea water, such
as-a cubic foot, which weighs 64 pounds avoirdupois. The
vessel’s weight being thus obtained, the determination of the
stability, whatever be its form or inclination from the upright,
requires only that the line G Z shall be known, or the pro-
portion which it bears to some given line, for instance, the
line B A, shall be ascertained.

A general method of constructing this line is demonstrated
in the Phil. Trans. for the year 1796, but is there principally
applied to the floating position of bodies ; its use in inves-
tigating the stability of vessels is incidentally mentioned, and
in general terms, rather than as being itself a subject of dis-
quisition. This theorem is founded on supposing the centres
of gravity of the several volumes BOA, COFH, ASH, BSC,
(fig. 1.) to be given in position ; an assumption allowable in
demonstrating a general theorem : but, in applying it to the
stability of particular vessels, it becomes necessary that the
positions of these points should be absolutely found, and the
results combined with the other conditions, to infer the mea-
sure of stability ; a determination which, in some cases, is
attended with much difficulty, and in others, is not prac-
ticable by any direct methods ; an instance, amongst many
that might be mentioned, in which the particular application
is more difficult than the general demonstration of propo-
sitions. The following constructions and investigations are

Ee 2
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principally inferred from the general theorem for ascertaining
the stability of floating bodies ; which is here subjoined, to
avoid the necessity of future references, as well as for the
purpose of stating more distinctly the observations which fol-
low it.

Let M (fig. 1.) be the centre of gravity of the volume ASH,
which has been immersed under water, and let I be the centre
of gravity of the volume B S C, which has emerged above the
water’s surface, in consequence of the vessel’s inclination ;
through the points M and I, draw the lines ML, IK, per-
pendicular to the line CH, which coincides with the water’s
surface when the vessel is inclined : through E, the centre of
gravity of the displaced volume BOA, draw EV parallel and
equal to KL, and through G draw GU parallel and GR perpen-
dicular to CH ; according to the theorem, the line ET will be
determined by the following proportion. As the total volume
displaced BOA is to SAH, the volume immersed in consequence
of the mclmaﬁon, sois KL or EV to ET; and, since the angle
EGR is equal to the vessel’s inclination ASH, and the dis-
tance GE is supposed to be given, the line ER will be known
because ER is to GE as the sine of the angle EGR to radius;
ER being subtracted from ET will leave RT or GZ, equal
to the measure of the vessel's stability.

Suppose the line K L to be denoted by the letter b let
the volume ASH be represented by A, and the volume BOA
by V. Then, according to the theorem, since V: A::::b:

ET, it follows that ET = <, A and if GE is put = d, and s
= the sine of the angle to whlch the vessel is inclined, radius
being = 1, ER will be = d s; A and the measure of the ves-

sel’s stablhty RT or GZ = — ds.
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Through the points C and H, (fig. 1.) let the lines CF,
WH, be drawn parallel to BA. The position of the points
M and I, the magnitude of the line KL, and the areas or
volumes ASH, BSC, being the same, whatever alteration
may take place in the volume V, or the entire volume dis-
placed, the Quantity KL x area ASH or bA will remain
the same: and, since the line ET = livé, it will follow, that
the zone WHFC, situated between wind and water, (ac-
cording to a technical expression,) not being altered, ET will
be in the inverse proportion of V, or the total volume dis-
placed. If, therefore, the shape of the vessel under the line CF
should be any how changed, so as to coincide with another
figure, suppose C¢fF, (fig. 2.) instead of COF, (fig. 1.) the
volume C ¢ fF being equal to the volume COF, the line ET
will be the same in both cases. In consequence of this change
of figure, the position of the point E, (fig.1.) or centre of gra-
vity of the volume BOA, may be situated higher or lower in
the line OD ; yet, if the centre of gravity G is so adjusted by
ballast, or other means; that the distance GE shall be the
same, the stability of each vessel, BCOA (fig.1.) and BC¢fA
(fig. 2.) will be perfectly the same, when inclined to the same
angle ASH from the upright. It must also be observed,
that since ET is always greater in the same proportion in

“which the volume immersed BOA is less, the zone WHCF
being both in magnitude and form the same, having found
by construction or calculation the value of the line ET cor-
responding to any given volume displaced, suppose V =
BCOA, (fig. 1.) the line E ¢ corresponding to any other mag-
nitude of volume displaced, suppose v=BCV w [ FA, (fig. 2.)
will be immediately inferred ; for, since V.v::E¢:ET, it
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follows that E t = E.Tvx 'V, or because ET = %é, by substitu-

tion, Et = f’-;é. For these reasons, the determination of sta-

bility does not require that the form of the entire volume
displaced should be given, but the form only of the zone
WCHF, (fig.1.and 2.) including the angle of the vessel’s
inclination AS H ; these conditions, together with the mag-
nitude of the immersed volume, and the distance between the
two centres of gravity G and E, are sufficient for finding
the measure of stability, at any given angle of inclination
from the upright.

CASE 1.

The sides of a vessel are parallel to the plane of the masts,
both above and beneath the water-line.

QBCOAH (fig. g) coincides with the vertical section of
a vessel when it floats upright and quiescent, and is inter-
sected by the water’s surface in the line BA ; the sides QC,
H D, are parallel to each other, and to the plane of the masts
WO, and are therefore perpendicular to BA. G is the centre
of gravity of the vessel ; V represents the magnitude of the
volume immersed under the water; the centre of gravity of
this volume is situated at E. Suppose the vessel to be in-
clined from its quiescent position through any given angle,
it is required to express, by geometrical construction, the mea-
sure of the vessel’s stability, when thus inclined. Bisect B A
in the point S, and through S draw C S H, inclined to BA, at
the given angle of the vessel’s inclination from the upright.
Bisect BC in F, and AH in N; and join SF and SN. In the
line SF take SI to SF as 2 to g; also, in the line SN, take
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SM to SN as 2 to g. Through the points I and M, draw IK,
ML, perpendicular to CH. Through the point E, draw EV
parallel and equal to KL. In the line EV, take ET to EV,
in the proportion which the volume ASH bears to the entire
volume displaced. Through G, draw G U parallel to C H;
and through T, draw TZ perpendicular to GU. GZ is the
measure of the vessel’s stability. The demonstration of this
construction evidently follows from the general theorem.
From this construction, the value of GZ, or measure of the
vessel’s stability, may be investigated analytically, and ex-
pressed in general terms. Through G, draw G R perpendi-
cularto EV. Let BA=¢ GE=d, theangle ASH=S;
radius = 1. The rules of trigonometry give the following de-

. . ang. S Y
terminations. AN =£—5—t—4-g—- :SN = -:— x\/ 4 + tang.*S.
Also, as SN : HN : : sine NHS : sin. NSH, or = x
\/4. + tang.*S: 5—’—(—%@ : :cos. S.:sin. N SH. Wherefore

. sin. S 2 4 4 tang.?S —sin.2 §
. = ,=——=——13 C0s.”"NSH= =
sin.NSH Vit PRI

2 4 sec.?§ 4 c0s.2S _ sec.$ 4 cos. S -
pRTR = —Targs (because 2 x cqs.S x 5eC.S = 2)
sec. S 4 cos. S

tion, SM=2SN, and SN =§x\/4 + tang*S,SM =
-2— % \/.4. + tang.”S, and SL = %’x /4 + tang.*S x
sec. 8 4 cos.§ ¢t P - . g
,s/ng.?s‘ = = xsec.S 4 cos. S : an‘d the trlang]es‘» S_L M,
S1I K being similar and equal, K L = 2 S L: Wherefore
KL= —;— x sec, S -+ cos. S = E V. The area of the triangle
ASH =X 188 vepresenting the volume immersed by the
vessel’s inclination ; and by construction,

And since by construc-

consequently cos. NS H =
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AsV:volume ASH::EV:ET, or
. 1* x tang. S |
V.——-§ :

: -;— x sec. S 4 cos. S : ET'; this will give

the value of ET = £X ta"g’sz’; ?S's 3¢S and because
ER:EG::sin.S: 1, and EG = d, it follows, that

ER =4d xsin.S; and therefore R T, or the measure of the

£ xzta{l,g's x €0S. S + sec. S —d x sin. S.

To exemplify this determination by referring to a particu-
lar case, let the vessel’s breadth at the water’s surface, or BA,
be divided into 100 equal parts, and let G E be 13 thereof;
so that £ = 100, and d = 13. Suppose the inclination of the
vessel from the perpendicular, or ASH, to be 15°, = S ; and
let the area BC O DA, representing the volume displaced,
be equal to a square of which the side is = 60 ; so that the
area V shall = g6oo : then, referring to the solution, we
obtain

vessel’s stability GZ =

cos. S 4 sec. S = 2.0012
Also 3 x tang.S 1000000 tang.15°

24V 24 x 3600 3.1013
ET =2.0012 x g.10190 = 6.2063
d x sin.S = 13 x sin .15° = g.3646
measure of stability, or GZ = 2.8417

It appears by this result, that when the vessel has been
inclined from the upright through an angle of 15°, the direc-
tion of the fluid’s pressure, acting to restore the quiescent
position, will pass at a distance estimated horizontally from
the axis = 2.84, when the breadth BA = 100. And this will
be true, whatever be the length of the axis.

The fluid’s pressure is the weight of water dlsplaced the
magnitude of which depends both on the area of the vertical
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sections, and length of the axis: suppose this weight to be
1000 tons; according to the preceding determination, the sta-
bility of the vessel, when inclined from the upright to an angle
of 15°, will be a pressure equal to the weight of 1000 tons, act-
ing at a distance of —2116%;-*- parts of the breadth B A from the
axis, to restore the vessel to the position from which it has
been inclined. This force is the same as if a pressure of

ﬁ’ff—s’gis—“ = 56.8 tons, should be applied to turn the vessel at
the distance of 50 from the axis: if therefore the wind, or other
equivalent power, should act on the sails of the vessel with a
force of 56.8 tons, at the mean or average distance of 50, or %
the breadth BA from the axis, to incline the ship, the force of
stability will just balance it, so as to preserve an equilibrium ;
the vessel continuing inclined from the upright at the angle of
15°. If the wind’s force should be less, the inclination must
necessarily be diminished ; if greater, it must be increased,
until the two forces balance each other. Here it is to be ob-
served, that the force of the wind is estimated in a direction
which is perpendicular to the plane of the masts.*

~ * In this and the following numerical examples, in order to bring into comparison
the effect of giving different forms to the sides of vessels, their weights, and all the
other conditions (the figure of the sides excepted) on which the stability depends, are
assumed to be the same. The measures of stability are compared, both by the relative
distances from the axis at which a given pressure, equal to the vessel’s weight, acts to
turn the ship round the longer axis, and by the relative equivalent weights which act
at a given distance from the axis. By the latter method, the proportions of stability
are perhaps more distinctly expressed than by the former, although both are essen-
tially the same.

The mechanical force.employed to incline a vessel from the upright, through any
given angle, for the purpose of examining and repairing the bottom of a ship, is to
be ascertained from the theorems here given for expressing the measures of stability,

MDCCXCVIII. Ff
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CASE 1I.

The sides of a vessel project outward above the water-line,
and are parallel to the masts under the water-line.

The line BA (ﬁg.4.) represents the intersection of the
water’s surface with the vessel, when floating upright. The
lines PC, QW, are parallel to each other, and to the line XO,
which coincides with the plane of the masts, and bisects the line
BA in the point D; BC and AW, which are parallel to the
plane of the masts, coincide with the sides of the vessel under
the water-line; and BY, AH, which project outwards from
the plane of the masts, at the angle QAH, or YBP, are the
sides of the vessel above the water-line. CH represents the
intersection of the water’s surface with the vessel, when in-
clined from the perpendicular, through a given angle OPQ =
ASH. The distance G E, between the centres of gravity of
the vessel and of the volume displaced, and the magnitude of
that volume being supposed known, and the angle QAH, at
which the sides AH, BY, are inclined to the plane of the masts,
being also known, it is required to ascertain, by geometrical
construction, the measure of the vessel’s stability, when the

which is exactly equal to the force to be applied for that purpose. Another method
of inclining a vessel (well adapted for making experiments on this subject) is, by ap-
plying a timber at right angles to the plane of the masts. If a weight be affixed to
one of its extremities, from having given the weight so applied, and its distance from
the plane of the masts, together with the other conditions which determine stability,
the angle of inclination, through which the ship will be inclined, may be determined
by the theorems in these pages. The same inferences may be obtained, from having
given the weights and spaces through which the guns are run out on one side, and
drawn in on the other, instead of the weight affixed, according to the method last
described.
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vessel is inclined from the perpendicular, through an angle
equal to the angle OPQ.

At whatever angle the vessel may be inclined from the per-
pendicular, the total volume immersed must alwdys remain the
same, while the vessel’s weight continues unaltered. Where-
fore, the volume which has been immersed, or ASH, must be
equal to the volume BSC, which has emerged from the water,
in consequence of the vessel’s inclination. For this reason, and
because the side AH projects outward, while the side BC is
parallel to the plane of the masts, it must necessarily happen,
that the point S will not in this case bisect the line BA, as it
did in the preceding construction, but will be removed nearer
to the side AH, which has been immersed by the inclination
of the vessel. Previously, therefore, to any consideration of
the stability, it will be necessary to define the position of the
point S in the line AB, so that a line CH, being drawn
through S, at a given angle of inclination to AB, equal to that
of the ship’s inclination from the perpendicular, shall cut off
the area ASH equal to the area BSC.

Let the given angle of inclination be OPQ equa] to ASH
(fig. 4.): the angle QAH, at which the sides of the vessel are
inclined outward from the plane of the masts above the water-
line, is supposed to be given: this angle 4 go° will be the angle
SAH, which is therefore a known quantity : the remaining
angle SHA, in the triangle ASH, will likewise be known.

Through the extremity B of the line BA, (fig. 5.) equal to
the vessel’s breadth at the water-line, draw the indefinite line
BU inclined to BA, at an angle ABU equal to OPQ : in BU,
take any point O, and, in the line BO, set off BD to BO, as the
cosine of the angle ABU to radius. In the line BD, take BE to
BD, as the sine of the angle BAU is to radius : also take BF to

Ffe
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BO, as the sine of the angle AUB to radius. Let BG be taken
a geometrical mean proportional between the lines BF and BE ;
and from the point G, in the direction of the line GU, set off GZ
equal to BF : join AZ; and, through the point G, draw GS
parallel to ZA, intersecting BA in the point S. Through S,
draw the line CH parallel to BU: the area ASH will be equal
to the area BSC.

Since, in the triangles ASH, BSC, the angle ASH is equal
to the angle BSC, the areas of the triangles will be in a ratio
compounded of the ratios of the sides, including the equal
angles ; that is, the area of the triangle ASH, will be to the
area of the triangle BSC in the ratio of SA x SH to SB x
SC. By the construction, the angle ASH = the angle ABU
= OPQ; and the angle AHS = the angle AUB: also, by

construction,
BO :BD:: rad. : cos. ASH.
Also BD :BE::rad. :sin. SAH.
And BF :BO::sin. AHS: rad.
Joining these ratios BF : BE ::sin. AHS x rad.: cos. ASH x sin. SAH.
But, by the construction, and by the similarity of the triangles,
BGS, BZA, BFor GZ:BE*::BF*:BG*:: GZ*: BG*:: SA*: SB*:
Wherefore SA?: SB*::sin. AHS x rad.: cos. ASH x sin. SAH.

And by trigonometry SH : SA ::sin. SAH  .:sin. AHS;
and SB :S8C ::cos. ASH . :rad.
Joining these ratios SA xSH :SBxSC: : : rad.

But the area ASH is to the area BSC as SA xSH to SB x
SC; consequently, the area ASH is equal to the area BSC.
To proceed with the construction of the second case.
Through the point S, (fig. 4.) determined by the preceding
construction, draw the line CH inclined to BA at the angle

# Because the ratio of BE to BG is equal to the ratio of BG to BF, by the construc-
tion, it will follow that the ratio of BE to BF is double the ratio of BE to BG.
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ASH, equal to the given angle OPQ: when the vessel is inclined
from the perpendicular through this angle, it will be inter-
sected by the water’s surface coinciding with the line CH.,
Bisect BC in F,and AH in N; and join SF, SN : take SI
to SF,as2tog; and SM to SN, in the same proportion.
Through I and M, draw the lines IK, ML, perpendicular to
CH. Through the centre of gravity of the vessel G, draw
G U parallel to CH; and through the centre of gravity E, of
the displaced volume B O A, draw EV parallel and equal to
KL; and in EV take ET to EV, in the same proportion
which the volume ASH bears to the entire volume displaced
BOA. Through T, draw T Z perpendicular to GU. GZ is
the measure of the vessel’s stability.

To obtain an analytical value of the line GZ, for brevity,
let the sine of the angle ASH be denoted by s, when radius
is =1, make sin. HAS =@a; sin. AHS =b; sin. SCB =c.
Let GE=d. Also, let the entire volume displaced = V. By
the rules of trigonometry, it is found that

*SL.__ J4+S % l—b+4.sx\/1-—a

Also SK =—3— x cos. ASH 4 sec. ASH.
S8 xtang ASH

The area SCB or ASH =

SA x SB* x tang. ASH sxVI—a
Wherefore ET ==—= :Vang ~/4+-" +4 +

4 Ex g ASH  cos. ASH + sec. ASH. If the breadth BA

* When the angle SAH =90, 1 —a* = 0; and b =cos. S ; in which case, if ¢ is
4

s .
put=—cos. S, SL————wx\/4_+ but4vr =4 -} tang.® S X sin®> S =4 +

tang.> S—tang.* S X c0s.* S = 2} seC.* § 4 €0s.* § = cos. § -+ sec. 8. Wherefore SL =

SA
-;—x COS. S+secS
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be represented by the letter £, it is inferred, from the construc-

tx Vb txVac
tion in p. 220, that SA = —=— and SB=-—2>—"2=, T
p- ? Vb-}-Vac Vb4V ac he

value of the line ET having been thus determined, if ER =d x
sin. ASH or ds be subtracted from it, the result will be GZ,
the measure of the vessel’s stability.

Suppose the sides BY, AH, (fig. 4.) to project outward, at an
angle of 15 inclination to the parallel sides BC, AW, so as to
make the angle SAH = 105°. Let the vessel’s inclination from
the upright be the angle ASH ==15°; and therefore AHS =60,
and SCB = 75°. Let the breadth BA or ¢ = 100 equal parts, of
which d or GE = 1. Then, by calculating from the analy-
tical values just determined, it is found that KL =SL + SK =
68,017 : the area ASH = g47.44, and the entire volume
immersed V, being, as in the former case, = g6oo, ET =

ﬁi’%—%g” 4% — 6.57. And, since ER or d x sin. ASH is ==
8.6, if the latter value be subtracted from the former, the re-
sult will be GZ = g.21, or the measure of the vessel’s stability.

The force of stability, to restore the vessel to the upright po-
sition, will be precisely the vessel’s weight, or fluid’s pressure,
acting in the direction of a vertical line, which passes at a dis-
tance of g.2o from the axis, estimated in a horizontal direction.
And this force is equivalent to, and will counterbalance, 3;)'
parts of the vessel’s weight, applied to act in a contrary direc-
tion, at the distance of 50 from the said axis. So that, if the

vessel’s weight should be 1000 tons, the force of stability would

balance a weight or force of 3.21 ; 1000

act at the distance 5o from the axis.

== 64.2 tons, applied to
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CASE III.

The sides of a vessel are inclined inward above the water-
line, and are parallel to the plane of the masts under the water-
line.

AH, BY, (fig.6.) are the sides of a vessel inclined inward
above the water-line BA, at an angle HAQ = YBP from the di-
rection of the sides AW, BC, under the water-line, which are
parallel to each other, and to the plane of the masts. Suppose
the vessel to be inclined from the upright, through an angle
= OPQ. By the construction, (p. 220.) draw the line CH
intersecting BA, in a point S, at an angle ASH equal to
the given angle OPQ; so that the area ASH shall be equal
to the area BSC. When the vessel has been inclined through
the given angle OPQ, it will be intersected by the water’s
surface in the line CH. The construction of the line GZ, or
measure of the vessel’s stability, is the same as in the preceding

case.
Let the sine of ASH =3s; sin. SAH = a; sin. SHA =5 ;
sin. SCB=ctorad. = 1. Alsolet GE =d.
From the rules of trigonometry, it is inferred that

KL__——-X\/;‘_‘_ 2 ‘""-’ _pxvVi—a

P2
+ SB x cos. ASH + sec. ASH.
The area SBC or ASH = XX 231
If, therefore, the total volume immersed is made = V, the
value of the line ET will be

SA x SB’x tang ASH 1—b 4 XV 1—a?
ET = xV g5 sk X
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4 SBx taﬁf;g- 2% «cos. ASH + sec. ASH; in which expres-

sion SA = '{/%f,_{?/%‘;’ and SB = 5—%/%; ¢ being == the
breadth BA.

The value of ET having been thus obtained, if ER =d x
sine ASH be subtracted from it, there will remain the value of
GZ, the measure of the vessel’s stability.

Suppose the vessel’s inclination from the perpendicular, or
ASH, to be = 15, let the inclination of the sides inward above
the water-line, from the direction of the parallel sides under the
water, or HAQ = 1% therefore SAH = 75°, and SHA = go°,
making BA = ¢, and, applying these conditions to the analyti-
cal value just determined, it is found that KL = 65.530; the
area ASH = geg.42; and the volume immersed, or V, being

. . . o 65.524X323.42
assumed = 3600, as in the preceding cases, ET = —==— P a—

= 5.89. Subtracting from this, ER = g.g6, there will remain
GZ = 2.53, or the measure of stability. If the vessel’s weight
should be 1000 tons, the force of stability will be 1000 tons,

acting to turn the vessel ata distance of =23 parts of the breadth
B A from the axis; which is equal to a force or weight of

‘°°°5>;i'_5—3 = 50.6 tons, acting to turn the vessel at a distance of

50 from the axis.

CASE IV,
The sides of a vessel project outwards, and at equal incli-
nations to the plane of the masts, both above and beneath the

water-line.
BA (Tab.IX. fig. 7.) is the breadth of the vessel, and coin-
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cides with the water’s surface, when the vessel floats upright.
XE denotes the plane of the masts, bisecting BA in the point S.
PU, QW, are lines drawn through the extremities of theline BA,
and perpendicular to it, and therefore parallel to EX : the sides
of the vessel above the Water-liﬁe, AH, BY, are inclined outward
from the plane of the masts, at an angle QAH =PBY; and
BC, AD, are the sides under the water-line, also inclined out-
ward from the plane of the masts, at an angle = DAW =
CBU=0QAH. G and E represent the centres of gravity of
the vessel, and of the volume displaced, as in the former cases.
To construct the measure of stability, corresponding to any
given angle of inclination from the upright,

Through the point S, which bisects the line BA, draw the
line CH inclined to BA, at the angle ASH, equal to the given
angle of inclination from the upright. Since, by the condi-
tions of this problem, the triangles ASH, BSC, are similar and
equal figures, it follows, that when the vessel is inclined from
the perpendicular through the angle ASH, it will be inter-
sected by the water’s surface, in the direction of the line CH.
The subsequent part of this construction is similar to those of
the preceding cases, as sufficiently appears by inspection of the
figure.

Let the breadth of the vessel at the water’s surface, or BA
== ¢: put the sine of the angle ASH =y, sine SAH = q, sine
SHA = b =radius == 1, GE =d. Then the area ASH, or

BSC =L and, if the total volume immersed is put =V, the

8h
measure of the vessel’s stability, or GZ, will be = ...__._zi :,‘; x
Vi—a
\/4.«+3 +4sx b' “ —ds.

MDCCXCVIII. Gg
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Let BA, or =100, d =18, ASH = 15°, SAH = 105°, V'
=g600, as in the former cases : then, s =sine 15°, a =sine 105°,
b = sine 60°; by referring to the solution, GZ= 8.59; and
the stability will be the weight of the véssel, suppose 1000 tons,
acting at the distance g.59 from the axis, to turn the vessel;
which force is equivalent to a weight of #1.7 tons, applied at
the distance of 50 from the axis.

CASE V,

The sides of a vessel are inclined inward, and at equal
angles of inclination to the plane of the masts, both above and
beneath the water-line. ‘

B A (fig. 8.) is the breadth of the vessel coinciding with
the water’s surface, when floating upright. XE represents the
plane of the masts, bisecting B A in the point S. UP, WQ,
are lines drawn through the extremities of the line BA, parallel
to XE. BY, AH, are the sides of the vessel above the water-
line, inclined inward to the plane of the masts, at the angle
QAH=YBP. BC, AD, are the sides under the water-line;
inclined inward to the plane of the masts, at the angle DAW
or CBU;, which are equal to HAQ or YBP. The other condi-
tions are as in the former cases. Through the point S, draw
the line CH inclined to BA, at the angle ASH, equal to the
vessel’s inclination from the upright. Since the triangles ASH,
BSC, are similar and equal ﬁgures, it-follows, that when the
vessel is inclined to the angle ASH, it will be intersected by
the water’s surface in the line CH. The remaining part of
this construction is similar to that of the preceding cases.

The same notation being adopted with that which was used
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in the preceding case, by referring to trigonometrical properties,
it is found that the measure of stability, or
GZ= i\s/t; \/4,+sx "'f 4s’“;'—“z—a':»‘.

Let ¢ = 100, d = 13, the inclination of the sides inward, or
HAQ=15", ASH = 15°, SAH = 75°, SHA == go": by calcu-
lating from these data, it is found that GZ = 2.21.

If the vessel’s weight should be 1000 tons, the stability will
be this weight, acting to turn the vessel at the distance 2.21
from the axis; which is equivalent to a force of 44.2 tons, ap-
plied at the distance of 50 from the axis.

CASE VI.

The sides of a vessel coincide with the sides of an isosceles
wedge, (fig. 9.) meeting, if produced, in an angle BWA,
which is beneath the water’s surface.

Supposing the sides to be continued till they meet, the ver-
tical sections will be equal isosceles triangles. BAW repre-
sents one of these triangles, BA being coincident with the
water’s surface, and cutting off the line BW equal to AW.
The angle WBA = WAB is supposed to be given. If the
vessel should be inclined from the perpendicular, so that the
water’s surface shall coincide with the line CH, the point of
intersection S must be so situated, that the area or volume im-
mersed, in consequence of the inclination, that is, ASH, shall
be equal to the area or volume SBC, which has emerged from
the water. Previously, therefore, to the construction of this
case, the position of the point S is to be geometrically deter-
mined, according to the conditions required.

Gg e
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Let BWA (fig. 10.) represent a vertical section of the ves-
sel. Through the extremity B of the line BA, draw BO in-
clined to B A, at the angle ABO, equal to the vessel’s inclina-
tion from the upright. In this line, take any point R, and in
BR take BI to BR, as the sine of the angle WBR to radius.
Also take BF to BR as the sine of BRW to radius; and let
BG be a geometrical mean proportional between the lines BF
and BI; from the point G, set off GZ equal to BF; join ZA,
and, through G, draw GS parallel to ZA; and, through S,
draw CH parallel to BZ. The area ASH will be equal to the
area SBC.

By the construction, the angle ARB =AHS, and the angle
WCH = WBR; ‘

also BR : BI :: rad. : sine SCB,
and BF : BR :: sine AHS : rad.

Joining these ratios, BF : BI :: sine AHS : sine SCB.
By the construction, and the similarity of the triangles
BGS, BZA.
BF :Bl:: BF*: BG*:: GZ*: BG*:: SA*: SB"
Wherefore  SA*: SB*:: sine AHS : sine SCB
By trigonometry, SH : SA :: sine SAH : sine AHS

and SB :SC :: sine SCB : sine SAH =sine SBC
Joining these ratios, SA x SH: SBx SC :: 1: 1.
Therefore SA x SH = SB x SC.

But the angle ASH being equal to the angle BSC, the area
of the triangle ASH will be to the area of the triangle BSC, as
SA 'x SH is to SB x SC; and, since SA x SH is equal to SB
x SC, the area of the triangle ASH is equal to the area of the
triangle SBC.
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The point S having been thus determined, (fig. 9.) if the
line CH is drawn through it, inclined to BA at an angle equal
to the vessel’s inclination from the upright, the water’s surface
will coincide with the line CH.

To proceed with the construction of this case; bisect BA
in D, (fig. 9.) and join WD: let G represent the centre of
gravity of the vessel, and E the centre of gravity of the volume
displaced, when the vessel floats upright. Let M and I be the
centres of gravity of the triangles SAH, SBC; and ML, IK,
lines drawn perpendicular to CH, through the points M and I
respectively. Through G, draw GU parallel to CH; and,
through E, draw EV. parallel and equal to KL. In EV, take
ET to EV as the area ASH is to the area representing the
total volume immersed. Through T, draw TZ perpendicular
to GU. GZ will be the measure of the vessel’s stability.

As in the preceding cases, let BA be denoted by the letter ¢,
and put the sine of ASH = s, sine SAH = a, sine SHA =},
sine SCB = ¢; the total volume immersed = V.

Bytrigonometry,SL:s—éx 4_|_*’><'—b +4sx«;n_a’

SK._.. 3 x\/4+5 X1—c* 4sxV1_a=

2 2
And, since the area ASH — SAZ’;” — 5B 2’:”, and Vis the area

representing the entire volume immersed, the measure of sta-
bility, or

__SA3xsa s? x1 1—b* 45X 7 1—ad®
CL == Xf+ +=3
SB xsa / s‘xx c 4sx~/l.—a’
4+ —ds.

<

In which expression, SA = t—’“-{-l-’— nd SB = X¥¢_

b+V_c" Vb +Vc.
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Let the sides of a vessel be plane surfaces, inclined to each
other at an angle of go°; the vessel’s inclination from the up-
right =15"; BA=¢=100; GE=d = 1g; the angle SAH=
105°; AHS =60°: BCS = go°. By calculating the value of
the line GZ, according to the solution just given, it is found

SA¥ xsa s? XI—b 4sxV1—-a
that —— \/4_.+ + = g.1155

SB xsa s* XI-—L‘ 4sx1/1—a _—
an \/4+ = g.1075

¢

Suin of these values = 6.2230
ds - - - =3365
Finally, the measure of the vessel’s stability,

SA} X sa \/ s* )(l—b 4sle—a
or St Sy p SR

“6vVb
+SB3xsa \/44+s>“_c 45)“/':“ -—ds=GZ=2-858

c

If the weight of the vessel should be 1c00 tons, the force of
stability will be equivalent to that weight of pressure, acting at
the distance of 2.85 from the axis; or the welght of 5%.0 tons,
acting at the distance of 50 from the axis.

If the sides should be inclined at an angle of 6¢°, instead of
80°, the measure of stability will be 2.92 ; and the effort to turn
the vessel equal to 1000 tons, acting at the distance 2.92, or
58.4 tons acting at the distance of 50 from the axis.

The sides of vessels are not unfrequently formed so as to
coincide with the sides of an isosceles wedge, or are so little
curved as to approximate nearly to that figure, at least so far
as that portion of the sides extends which may be immersed in,
or may emerge from, the water, by the vessel’s inclination. The
preceding solution being expressed in terms which are rather
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complicated, another solution is subjoined, by which the mea-
sure of stability is exhibited in more simple terms. The inves-
tigation is troublesome; but the conciseness of the result, and
the readiness with which it is applied to practical cases, com-
pensate for the difficulty of obtaining it.

Let the isosceles triangle BAF (Tab. X. fig. 11.), represent
a vertical section of the vessel; the base of which, BA, coin-
cides with the water’s surface, when the vessel floats upright.
Bisect BA in D, and join FD. Let G be the centre of gravity of
the vessel, and take FE to FD as 2 to g; E will be the centre of
gravity of the immersed volume when the vessel floats upright.
Draw the line CH, * intersecting the line BA at an angle
ASH, equal to the given angle of the vessel’s inclination from
the perpendicular, and cutting off the area ASH equal to
the area BSC. When the vessel is inclined through the angle
ASH, the line of intersection with the water’s surface will co-
incide with CH. Bisect CH in the point N, and join FN:
take FQ to FN as 2 to g. Q is the centre of gravity of the
area CFH, representing the volume immersed when the vessel
is inclined. Through Q, draw QM perpendicular to CH ; and,
through G, draw GZ perpendicular to QM. GZ is evidently
the measure of the vessel’s stability.

To obtain an analytical value of the line GZ, through Q,
draw OQP parallel to CH; through G, draw GR parallel to
QM; and, through E, draw ET perpendicular to QM. In this
investigation it will be expedient, first, to express in general
and known terms the line FW ; secondly, the line WQ, which
is to MW as the sine of the vessel’s inclination to radius : this
will give the value of MW, which being added to WF before

* By the construction, p. 228,
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found, the sum will be the line FM; from which, if FE, or2 of
FD, be subtracted, there will remain the line ME; which is
to ET as radius is to the sine of the inclination EMT, or
ASH. ET will therefore be expressed in known terms; from
which, if ER be subtracted, the remaining line will be RT,
or GZ, the measure of the vessel’s stability, analytically ex-
pressed.

By the construction, the area FBA is equal to the area
FCH ; and, since the area BAF is to the area IKF in the
same * proportion which the area FCH bears to the area FOP,
it follows, that the area FIK is equal to the area FOP. Also,
because CN is equal to NH, and OP is parallel to CH, it fol-
lows, that OQ is equal to QP. For brevity, let the angle KYP,
or ASH, be denoted by the letter S; FPO = FHC by P
POF = HCF by O; also let the angle PFO be made = F.

Because the areas IFK, PFO, are equal,

w = FE*x tang.L I, radius being = 1: wherefore,

FP— 2FE*xtang. £ F _ FE>xsec*LF
~— FOyxsineF — “FO

FP x sine P RTIN 2
FO =-———5—, by substitution FP

; and, because

FE2x sec2 LF x'sine O
sine P ?

and therefore FP=FE x sec.LF x sine O but sine FWP =

Sl
cos. S. ‘
Wherefore, FW : FP: : sine P: cos. S; or

FW: FE xsec. L F x 2%';—01; : sine P : cos.S; consequently,

FE x sec. 1 F x ¥'sine O xsmeP
FW = - X
cos. S

By investigation,} founded on the rules of trigonometry, it

* Each of these proportions being as g to 4. + See Appendix.



the Stability of Ships. 234

Vi—tang® L Fxtang’S
sec.LF x sec. §

appears that +/sine O x sine P =

which quantity being substituted instead of +/sine O x sine P,
in the value of FW just found, the result will be
FW=FE x v/1— tang.* L F x tang.”S.
It is found also, from trigonometrical rules, that

*WQ =FE x ta:;g't iE x:img' SX sec: S, and since
1—tang.* 3 F xtang.*$§
WQ : WM :: sine S: rad. we have
WM = FE x tang.* 1 F x tang. S xsec. §
sineS X ¥/ 1—tang.* 1 f Xtang.*§

, or because

21 2
g S __ sec. S, WM = FE x —0gt i Fxsec$ ; and, sincc
sine § ¥ 1—tang* L F xtang.* 5
FW=FE x s/l—-tang 1 Fxtang.* S, and FM__WF+WM
we obtain the value of FM = FE x seci i ¥ :

¥ 1—tang.* 1 F x tang®* S
Therefore ME = FM — FE = FE e i F _1,

v1—tang.* L F xtang.*$S

. sec.? L F

and ET = FE x sine S x z — 1.

Vi tang.* 3 F x tfmg." S
This value of ET is inferred from supposing the area BFA to
t‘l.

represent the entire volume immersed, and which = e —5

t being equal to the line BA.

If, the sides BC, AH, remaining the same, the figure and
magnitude of the immersed volume should be changed, so as to
‘be represented by any other quantity V+, the line ET will be
increased or diminished in the inverse proportion of the en-
tire volumes immersed, that is

° sec.? L F
asV:—_—_—:: FE xsine S x e s —1:ET.
4xtang. L F vV i—tang*I'F xtang.* S 1:ET
"And, since FE = ———t—-f—r-,
3tang. 4+ F
* See Appehdix; 1 See pages 213 and 214.

MNDCCXCVIIIL. Hh
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ET = 3 x sine :S - sec*1 F
12V xtang? 3 F = o/ T tang*IF xtang.* S

and the measure of the vessel’s stability, expressed in general
and known terms, will be

*G7Z — 13 xsine S < sec.? L F 1 d in. S

= — 1—dxsin. S.
12Vxtang* + F © &/ 1T "tang3 L F x tang.*S

When the angle of inclination S is evanescent, or in a prac-

tical sense very small, the expression becomes

3 1 . . . 3
GZ ='—%‘",Ls — d x sine S, agreeing with the solution

given by M. EuLER+ in this particular case.

If the inclination of the sides BF, AF, should be evanescent,
the sides will become parallel to each other, and to the masts,
both above and beneath the water-line; a case which has al-
ready been solved } : and consequently, the solution of case 1.
ought to agree with that which has been just given for the
stability, when the two sides are inclined at a given angle,
asSuming that angle as evanescent. Assuming, therefore, the
angle BFA evanescent, and S of any finite magnitude in the

general value of GZ, above determined, we have
1 TG 2—tang* 1Fxtang?$
v/1—tang’ L F x tang* S = = ,
sec.* F __242xtang>LFytang.? L F xsec.? I Fxtang.?S
?
2
#3 xsine S tang.* 1 F xtang.*S4 2 x tang.* 1 F
12V x tang > 1 F X 2

and

vi1—tang.* L F xtang.?$§ -
and therefore §GZ =
— d xsin. S.

*» This expression for the measure of stability, is evidently more simple, and better
adapted to practical application, than that which is inserted in page 229. The pre-
sent result might perhaps be obtained by more concise methods : the investigation
here given is the best that occurred to the author, after repeatedly endeavouring to
discover some other, requiring fewer trigonometrical calculations.

+ Theory of the Construction and Properties of Vessels, chap. viii. 1 Case 1.
t? xsin. S 242 xtang.> LF ftang L F xsec.>§ F x tang.? S
§ ET = 2 -1,
12V x tang* 1 F 2

) t3 % sin. S 2+ tang* S
orbecausesec. X F=1, ET = i X + tang
: 12V 2
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or GZ_%—E';'}i xtang.*S 4+ ¢ — d x sin. S,

__ Bxtang.§ . ‘
orGZ_'_———-z-w——xcos.S-l—sec. S —d x sin, S,

which is the measure of stability, when the inclined sides AF;
BF, become parallel, the angle F vanishing. But this quantity
is the measure of stability when the sides are parallel, as de-
termined by direct investigation*; by which agreement the
consistency of the two solutions is evinced.

To exemplify the general solution for the case of the sides
inclined at a given angle, suppose the angle BFA to be go°=
F,let S=15", AB=1¢ =100, GE=d = 13, V = g600.

From-the analytical value of the lme GZ, we obtain

8 xsme S

12V x tang.* . - - = 834464,
sec.? -{u F - _ _ __ o
¥ 1—tang* L F xtang.®§ . = .07457
83.4464 x .07457 - = 6.223
d x sin. S - - = g.365
and GZ, the measure of stability = 2.858,

precisely agreeing with the result calculated by the solution, in
pages 229 and 230, which has no apparent similitude or rela-
tion to the value for stability, as expressed according to this
last investigation, which is

. 3 x sin. § sec? L K X
Gl= 12V xtang* L F X — 1 d % sin. S.

Vi—tang* Lt x tang.*$§
According to the solution in page 229, the measure of sta-
bility is )

SAixsa s XI-—/J 4sxV1—a
GL = —5v;— ‘/4' + +

SB’xsa \/ s‘xl-—c 4sx~/1-a‘
ove 4+ — ds,

c

® Case 1.

Hh o
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in Wthh value s -—sm S “a=sin. SAH; ¢ = sin. SCB}

SA = = _txVh and SB =t ch = It might not, perhaps,

VbV ax:
be easy to deduce elther of these values from the other, or to
demonstrate their equality, otherwise than by the separate in-
vestigations from which they have been inferred; and. yet
“these quantities are not-approximations to equality, but are
strictly and mathematically equal.

CASE VII.

The sides of a vessel are coincident with the sides of a wedge,
meetmg, 1f produced at an angle which is above the water’s
surface. ,

The sides of a vessel are represented by the lines ¢b, cd,
(fig. 12.) inclined at an angle, so as, if produced, to meet at
the point w above the water’s surface, which is coincident with
ba; the lines wa, wb, are assumed equal. - Suppose the vessel to
be inclined from the perpendicular through any given angle;
let a line ch be drawn, intersecting the line da at the given
angle of inclination, and cutting* off the area ash equal to the
area bsc: when the vessel is inclined to the given angle from the
upright, the water’s surface will be coincident with the line cb.
Let m and 7 represent centres of gravity of the areas ash, bsc,
respectively, and let the line %2/ be constructed as in the former
cases. Let g be the centre of gravity of the vessel, sityated in the
line we, which is drawn perpendicular to and bisects ba, and
let ¢ be the centre of gravity of the volume displaced ; making
ev parallel and equal to /%, take ¢t to ev as the area bsc is to
the area representing the entire volume immersed. Through g,
draw gu parallel to ch, and, through #, draw % perpendicu-
lar to gu. gz will be the measure of the vessel’s stability.

* Page 228,
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From this construction, the following proposition is to be
inferred.

The sides of a vessel are plane surfaces, represented, (fig. 9.)
‘when produced, by the equal lines' AW, BW, which meet in the
point W, beneath the water-line. The sides of another vessel
|(fig. 12.) are also plane surfaces inclined to each other at the
same angle as in the former case, and represented by the equal
lines aw, bw, which meet at the point w above the water-line :
suppose the breadth of both vessels to be equal at the water-
line, and the angle BWA = the angle bwa; if the distances
between the centres of gravity of the vessels and of the im-
‘mersed volumes are equal, and the weights of the vessels are
also equal, the proposition affirms, that the stabilities of the
two vessels, when inclined to the same angle from the upright,
will always be equal.

Since the line BA = b4, and the angle BAW == the angle
baw, (fig.gand12.) by the conditions of the proposition, if the
angle BAW be applied over the angle baw, the point A coinci-
ding with the point a, it follows, that the point W, and the point
B, must coincide with the point w and the point b respectively;
and, since the lines BA, b4, are divided in the points S, s, on the
same conditions, namely, so that the lines CH, ¢ 4, shall be in-
chned to BA, and b 4, at the same angle, and shall cut off the
areas ASH, a s b, equal respectively to the areas BSC, bsc; it
‘must follow, that when the line AB is applied so as to coincide
with the line b, the point S will coincide with the point s ;
and the angle ASH being equal to the angle asb, by the sup-
position, the line SH will be equal to the line sb; and the
triangle ASH will be equal and similar to the triangle a s b.
The centres of gravity of these triangles, therefore, or the points
M and m, will coincide, as will also the lines ML, # I, which
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are drawn through these points perpendicular to CH.and ch.
The line SL will therefore coincide with the line s/, and is equal
to it. In the same manner, it is proved that the line SK is
equal to the line sk; consequently, KL is equal to 2. And
since, by construction, the area ASH is equal to the area
BSC, and the area ash equal to the area bsc; and, on appli-
cation of the figure AWB to the figure awb, the triangle ASH
coincides with the triangle as b, it follows, that the four areas
ASH, ash, BSC, bsc, are all equal.

, ASH :
But ET ¥ = X e — and ¢ i =

total volume immerse
and, since KL = £ [, and the volume ASH = the volume a s b,

KL x volume ASH = k! x volume ash; and the entire volume
immersed being the same in both vessels, by the supposition, it
follows that ET = e £.

This equality between the lines ET, e, is independent of
the position of the centres of gravity of the vessels, G, g, and
also of the position of the centres of graV1ty, E, ¢, in the lines
WD, wd. If the distances of GE, ge, should be equal, since the
angles of inclination from the upright, or EGR, }g,r, are equal
by the supposition, it follows that the sines of those angles to
equal radii must be equal,or ER =er. Subtracting, therefore,
ER from ET, and er frome¢, the remaining lines RT, 7%,
must be equal, or GZ = g z. The stability, therefore, of a
vessel, the sides of which are inclined to an angle under the
water’s surface, is equal to the stability of the vessel of which
the sides are inclined to an angle which is above the water’s
surface : the breadth at the water-hne, ‘and the other condi-
tions, being the same in both vessels.

This proposition is not confined to the case here demon-

kilxvolumeash
total volume immersed ’

* Fig. 9. See page z12.. t Fig. 12. See page 212.



the Stability of Ships. 239

strated, being equally true, whatever figure be given to the sides;
and whether they are plane or curved, provided the sides under
the water-line in one vessel are similar and equal, and similarly
disposed, in respect of the water-line, to the sides of the other
vessel above the water-line. QC, HO, (fig. 1g.) represent the
sides of a vessel projecting outward above the water-line, and
inclined inward under the water-line. Suppose the vessel to
be inclined from the upright through any given angle, and let
CH be supposed drawn inclined to the line BA at the given
angle, and cutting off the area ASH equal to the area SBC:
when the vessel is inclined, the water’s surface will coincide
with the line CH.

Let the sides QC, OH, be conceived to revolve round the line
BA as an axis, through 18¢°; the position of the sides will be re-
versed, as represented in fig. 14,: the sides which projected out-
ward above the water-line (fig. 1g.) equally project outward un-
der the water-line in fig. 14. and are similarly situated in respect
to the water-lines BA, ba. In like manner, the sides which are
inclined inward under the water-line, in fig. 13. are equally in-
clined inward above the water-line in fig. 14..; and are also simi-
larly situated in respect to that line. If M, I, are the centres of
gravity of the areas ASH, BSC, and m, i, the centres of gravity
of the areas ash, bsc, as in the former cases, and perpendicular
lines be drawn through them, ML, IK, and m!l, i%k; by argu-
ments similar to those which were used to demonstrate the pre-
ceding proposition, it will be evident that the lines KL, %/, are
equal; also that the areas ASH, BSC, ash, bsc, are all equal:
and, by proceeding to construct the measures of stability corre-
sponding to the two cases, it will appear that GZ = gz ; the
weight of both vessels, and consequently the entire volumes im-
mersed under water, being the same. The conclusion is, that, the
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other conditions 1 remammg the same, if the position of the sides
should be reversed, in the manncr described in the proposmon,v
the stablhty, at equal angles of inclination, will remain the same.
It may be proper in this place to remark, that the metacentric
curve, described by M. BoucuEg,* and M. CLAtrBoIs, and ap-
plied to the preceding cases, does not appear to have any relation
to the stability of vessels, except in the single pointfwheré' the
curve intersects the vertical axis; and therefore can be applica-
- ble only in the case when the angle of the vessel’s inclination
from the upright is evanescent. Let FBC, DAH, (fig. 15.) repre-
sent the sides of a vessel, BA coinciding with the water’s sur-
face when the vessel floats upright: bisect BA in S, and draw
ISE perpendlcular to BA. Let E be the centre of gravity of the
volume immersed. Suppose the vessel to be inclined through
a very small angle AS g, so that the water’s surface shall now
coincide with the line ba; and let the centre of gravity of the
volume immersed be Q. 'Through Q, draw the line QW per-
pendicular to ba, intersecting the line IE in the point W. This
point is called by M. BoucuER the metacentre. One of the prin-
cipal properties of this point is, that whenever the centre of gra=
vity of the vessel is situated beneath it, any where in the line WE,
(suppose at G,) the vessel will float permanently, with the line
IE vertical; but that, if the centre of gravity is placed above the
metacentre, suppose at g, the vessel will overset, from that po-
sition; for, drawing GZ, g=, perpendlcular to Qz, if the vessel
should be inclined through a small angle AS: a;‘ so as to immerse
the portion of the'side A a, the force of pressure acting in the
direction of the line QZ, to turn the vessel round an axis paSSmg
horizontally through G, will elevate the parts adjacent to A,soas
to restore the upright position : Whereas, if the centre of grav1ty
o Traztﬂ dit Navire, . z,o ‘ ot CLAIRBOIS, p: 289, et seq
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should be placed above the metacentre, suppose at g, the same
force of the fluid’s pressure, by turning the vessel round an axis
passing through g, must immerse further the portion of the side
Aa; and this immersion, being continued, will cause the vessel to
overset. Another property of this point has been demonstrated
by M. EuLER, * and other authors; which is, that when the
angles of a vessel’s inclination are evanescent, or very small,
the effect of stability, to restore the vessel to the upright po-
sition, will be as the sine of the angle of inclination GWZ +
and the line WG jointly: at the same small angles of incli-
nation, the stability of different vessels will be in proportion
to the line WG, or distances of the metacentre above the
centre of gravity. '
Let the curve EQ ¢ (Tab.XI. fig.16.) represent the line traced
by the successive centres of gravity of the immersed volumes,
while the vessel is inclined from the upright through any angle
ASH. M.Boucukr demonstrates, that a tangent to this curve in
any point Q, will be parallel to the water’s surface CH, corre-
sponding to that point: if, therefore, through any two adjacent
points Q and g, in the curve EQ ¢, lines QM, ¢ N, are drawn per-
pendicular to the lines CH, ¢, respectively, the intersection of
those lines in the point X will be the centre of curvature, and
XQ, X ¢, will be the radii of a circle, which has the same cur-
vature with the curve EQ in the point Q. For the same rea-
sons, the line WE (fig. 15, 16.) is the radius of a circle which
has the same curvature with the curve EQ in the point E. The
point W has been denominated the metacentre corresponding
to the upright position of the vessel, when the line WGE is
perpendicular to the water’s surface. M. BouGuEer denomi-
* Theory of the Construction of Vessels, chap. 8. book i, + To radius = 1.
MDCCXCVIIL Ii
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nates the point X the metacentre corresponding to the position
when the vessel has been inclined from the upright through the
angle ASH; and the curve WX is termed the metacentric
curve, being the line traced by the successive metacentres, or
intersections, of the lines QM, ¢ N, drawn perpendicular to the
lines in which the vessel is intersected by the water’s surface,
while it is gradually inclined. Consequently, according to. this
construction, the metacentric curve WX is the evolute, of
which the curve EQ ¢ is the involute.

-The construction and properties of the metacentric curve
being a subject of geometrical reasoning, considered purely as
such, are liable neither to ambiguity nor error; but, on what
grounds these properties are applied to measure the stability of
vessels, or to estimate their security from oversetting, when
much inclined from the upright, is not explained by M. Bou-
GUER, M. CLAIRBOIS, Or any other author 1 have had an op-
portunity of consulting: yet the opinions expressed by these
authors on the subject in question, have been adopted by many
persons as established principles; and, being of some import-
ance in the practice, as well as theory, of naval architecture, it
cannot be thought superfluous to pay some farther attention to
them. ,‘ |

M. BOoUuGUER,* having demonstrated the property of the me-
tacentre, which gives security from spontaneously oversetting,
to a vessel, whenever the centre of gravity is situated beneath
it, proceeds to observe, that his theorem, being founded on
supposing the angles of the vessel’s inclination as evanescent,
or extremely small, such as a vessel may experience in smooth
water, cannot be relied on for ascertaining the safety of ships,

* Trait¢ du Navire, p. 269.
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when agitated by the winds and waves in open sea, where the
inclinations from the upright must often become considerable.
In order to extend the application of his theorem to the larger
angles of inclination, he proposes to examine whether the me-
“tacentre ascends or descends as the vessel is gradually inclined.*
To effect this, the curve line EQ g (fig.16.) is to be traced, by find-
ing the successive centres of gravity of the volumes immersed
while the vessel is inclined ; and, from this curve the metacen-
tric curve WX is to be defined: the point where the metacentric
curve meets the vertical axis in W, is the metacentre corre-
sponding to the position when the vessel floats upright and
quiescent. He observes, that if the metacentre X ascends from
its original position W, while the vessel is inclined gradually
from the perpendicular, the vessel will be secure from overset-
ting ; but will be insecure, if that point should descend while
the vessel is inclined. No demonstration of this proposition is
given, either by M. BouGUkR, or by M. CrairBoIs, who un-
dertakes to explain the principles delivered in this chapter of
M. Boucuer’s work.+¢ If the proposition has been suggested
by some analogies which subsist between the construction of
the lines EW, QX, and other lines similarly drawn, they will
be insufficient to establish the truth of it. The analogies are
such as the following. W being the metacentre, and E the
centre of gravity of the volume displaced, when the vessel floats
upright, WE is the radius of curvature to the curve EQ ¢, at
the point E; X being also the metacentre, constructed accord-
ing to the method which has been described, when the vessel
has been inclined through an angle ASH, and Q the centre of
gravity of the corresponding volume immersed; XQ is the

* Traité du Navire, p.271. 4 CLairBors sur P Architecture Navale, p, 289, et seq.
Iie
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radius of curvature of the curve EQ at the point Q. Also, EW is
perpendicular to the water’s surface AB, when the vessel floats
upright ; and XQ is perpendicular to the water’s surface, when
the vessel is inclined through the angle ASH. When the vessel
floats upright, the stability is measured by the sine of inclina-
tion and the line GW jointly; and therefore the angle of in-
clination being given, will be measured by the line GW, and
-will-depend in some ratio or proportion on the line EW, when
GE remains the same, or when G is made to coincide with E.
The question is, whether the stability, when the vessel is
inclined to the angle ASH, will depend in a similar degree on
the line QX ? Respecting the supposed analogy it may be re-
marked, that one condition absolutely necessary to establish it
-is wanting ; namely, the centre of gravity G ought to be situ-
ated in the line XQ; but it is considerably distant from that
line, being placed in the vertical axis of the vessel WGE. This
material difference in the conditions corresponding to the two
cases, is sufficient to destroy all inference from analogy, even
if arguments of this kind could be admitted, in geometrical
subjects, to supply the place of demonstration. It is not diffi-
cult to shew geometrically, in what position and circumstances
of the vessel the line XQ will be the correct measure of its
stability. Suppose that, by any alteration in the distribution of
the ballast or lading, the centre of gravity should be removed
from the line WGE to the line XGQ), the vessel will float per-
manently with the line XQ perpendicular to the horizon, and
the mast WE will be inclined to it at the angle = ASH..
Since XQ is the radius of curvature of the curve EQ at the
point Q, and is also perpendicular to CH, the point X will be
the true position of the metacentre, corresponding to the float-
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ing position of the vessel, when the centre of gravity is situated
out of the vertical axis in the line XQ, and Q is the centre of
gravity of the volume displaced. The measure of stability, when
the inclination is any small angle, will be the sine of that angle
and the line XG jointly; comparing, therefore, the stability of
the vessel when the centre of gravity is situated in the line
WGE, with the stability when the centre of gravity is in the
line XGQ, the proportion of the two stabilities, at equal small
angles of inclination, will be as the line WG is to the line XG;
if the centre of gravity G should coincide with the point E in
the first case, and with the point Q in the latter case, a con-
dition often adopted by M. BouGUER, the stabilities will be in
the proportion of the lines WE to XQ, or in a triplicate ratio
of the lines BA, CH.

Such is the result of the examination proposed, from which
the only inference is, that while the centre of gravity remains
situated in the vertical axis WE, (the position it occupies in
vessels of every description,) the line XQ cannot be assumed
to measure or estimate the stability and security of a vessel at
sea, when inclined to the larger angles from the upright. M.
CLaIRBoOIS, to illustrate the principles of M. BoucuEr, adopts
two insfances, which are the same with Case v1. (fig. 9.) and
Case vir. (ﬁg 12.) in these pages. In the former case, the sides
coincide with those of an isosceles wedge; the breadth BA at the
water-line being the base, and the angle BWA situated under
the water’s surface. As the vessel thus formed is gradually in-
clined from the perpendlcular, he shews * that the curve traced
by the centre of gravity of the successive volumes immersed is
an hyperbola. Of this curve he calculates the successive radii

* CLAIRBOIS, P. 291: 295,
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of curvature, which he demonstrates to increase continually
with the inclination of the vessel : he shews, that the centres of
curvature thus found, or successive metacentres, according to M.
BouGUER’s construction, ascend as the vessel is inclined; a cir-
cumstance which, according to his principle, imparts security
from oversetting. On the contrary, in the other instance, when
the sides of a vessel are inclined to an angle which is above the
water’s surface,(fig.12.) from a similar mode of reasoning he con-
cludes, that the metacentre descends as the vessel is more and
more inclined; which, according to his proposition, would
endanger the safety of the vessel, when inclined to considerable
angles.

This determination is evidently inconsistent with the solu-
tions of Case vI. and VvIL preceding, by which it appears, that
the stability acting to restore vessels thus constructed to the
upright position, under the conditions that have been stated,
will be precisely the same at all equal inclinations from the
upright, whether the sides are inclined at an angle beneath or
above the water-line; all the other conditions being the same
in both cases.

The solution of these questions being connected with a prin~
ciple of some consequence in the practice of naval architecture,
the preceding observations have been offered with a view of
stating distinctly the opinions which are contradictory to the
solutions of Case vi. and viI. referring to the authors who have
treated on the subject, in order that a judgment may be formed
by persons conversant in naval architecture, whether the pro-
positions advanced by M. Boucuer and M. CraIrsois, or the
solutions of Case vi. and Case vii. here given, may be relied
on, as founded on the genuine principles of geometry and me-
chanics; for error must exist on one side or the other.
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But, until the demonstrations of the Cases vi. and viI. are
shewn to be erroneous, and reasons are produced in support of
M. BouGUER’s propositions, which he has delivered without
any demonstration, it may be allowable to suppose that his opi-
nions are, in these particular instances, ill founded.

The same principles are extended by M. Boucukr * to ex-
press a general value of the distance between the metacentre,
and the centre of the immersed part of the ship, when inclined to
Flu.i;(Pyiijf_; + in
which expression y and v are the parts of the total ordinate of

the water-section, (when the vessel is inclined, ) at the distance
x, measured on the longer axis from the initial point; the pro-
portion of y and v being determined by a line drawn parallel
to the axis through the centre of gravity of the section; and p
is put for the volume immersed.

‘When the centre of gravity is situated in the line QX, (fig.16.)
and the angle of inclination very small, the point of intersec-
tion of the lines CH, ¢ b, will bisect the ordinate CH : in this
case the vessel floats permanently with the line QX vertical, and
consequently with the line WE, or plane of the masts, inclined
to the horizon at the angle ASH. But the line QX, consist-
ently with the preceding observations, cannot be applied to
measure the stability or security from oversetting of a ship,
when the centre of gravity is placed in the line WE; that is,
in the plane of masts which divides the vessel into two parts
perfectly similar and equal; the only situation which the centre
of gravity can occupy, according to any mode of construction
hitherto practised.

any angle: this distance he affirms to be

* Traité du Navire, p. 273.
+ No-demonstration is given by M. BoucuEer of this proposition,
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A few remarks may be added in this place concerning a
theorem delivered by M. BouGuEr,* for measuring the stabi-
lity of vessels when inclined to evanescent angles from the
upright. The theorem is this: ¢« When the lengths of vessels
“ are the same, the stabilities are as the cubes of the breadths.”
This theorem seems at first view to stand independent of,
and not to require, any subsequent explanation: the author
immediately applies it to the discussion of some points respect-
ing the stability of vessels. If any person, relying on the au-
thor for the truth of this theorem, should only pay attention
to the proposition as it is here expressed, he would entertain
an opinion on the subject of stability which is altogether erro-
neous. M. BouGUER,{ in a subsequent page, gives a satisfac-
tory account of the limitations and restrictions under which
the theorem in question is to be understood. He observes, that
a restriction ought to be applied to the conditions of this pro-
position, in order to insure the exact correctness of it; which
is, that the whole weight of the vessel shall be concentered in
the centre of gravity of the displaced volume; a condition
which may be deemed amongst the most extreme cases that
can be devised, and such as is rarely known to exist.f The
vessel’s centre of gravity not being supposed coincident with
the centre of the displaced volume; M. BoucuEr§ gives the
true measure of stability when the angles of inclination are

# Traité du Navire, p. 299. + Ibid. p. 299 and j300.

1 In vessels of burden, the freights of which consist principally of iron, or other
metallic bodies, or blocks of stone, the vessel’s centre of gravity may be so depressed
as to coincide with, or even to be situated under, the centre of the immersed volume,
But such a disposition causes many inconveniences in the ship’s sailing ; and is never
adopted when it is possible to raise the centre of gravity to a higher position.

§ Traité du Navire, p. 300,
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evanescent; the only objection to which is, that it stands in
the author’s.page as being explanatory, and illustrative of a
proposition before delivered : whereas, it is in fact the real pro-
position for measuring the horizontal stability of vessels; the
proposition it is intended to explain being a particular case of
it, and requiring a condition which scarcely ever takes place
in the practice of constructing and adjusting ships for sea.

CASE VIII.

The sides of a vessel are parallel to the masts above the
water-line, (fig. 17.) and project outward beneath it.

In the second Case, (fig. 4.) the sides project outward above
the water-line, and are parallel to the masts under it. In
Case vii1. the disposition and form of the sides are the reverse of
the form according to Case 11. If, therefore, the angle of pro-
jection of the sides under the water, according to Case viir.
should be equal to the angle at which the sides project above
the water, according to Case 11. the other conditions being the
same, the stabilities* of the two vessels will be equal, at all
equal inclinations from the quiescent position. The solution
of this case must of consequence be precisely the same with
the solution of cask 11. and need not be here repeated.

CASE IX.

The sides of a vessel are parallel to the masts above the
water-line, (fig. 18.) and are inclined inward beneath it.

In this case, the position of the sides is the reverse of that
which is described in Case 111. (ﬁg 6.) If, therefore, the angles
at which the sides are inclined inward, according to Case 1x.

* Proposition subjoined to Case vir1. page z237.
MDCCXCVIII. Kk
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under the water-line, should be equal to the angle at which the
sides are inclined inward above the water-line, according to
Case 111. all the other conditions being the same, the stabilities
of the two vessels will be equal, at all equal inclinations from
the upright. The solution of Case 1x. is therefore to be derived
from that of Case 111.

CASE X.

The sides of a vessel coincide with the surface of a cylinder,
the vertical sections being equal circles.

Let QBOAH (fig. 19.) represent a vertical section of the
vessel. The surface of the water coincides with the line BA,
when the vessel floats upright. Suppose the vessel to be in-
clined from the quiescent position, through an angle ASH, so
that the water’s surface shall intersect the vessel’s, when in-
clined, in the line CH. Bisect the line BA in D, and the line
CH in Y; and, through the points D and Y, draw OD, FY,
perpendicular to the lines BA, CH, respectively, and meet-
ing, when produced, in the point M, which is the centre of
the circle. The angle ASH is the inclination of the vessel from
the perpendicular; and, being the inclination of the lines BA,
CH, which are perpendicular to the lines OM, FM, respec-~
tively, the inclination of the lines OM, FM, or the angle
DMF, will be equal to the angle ASH. Let E be the centre of
gravity' of the area BOA, representing the volume displaced,
when the vessel floats upright, and quiescent. In the line MF,
take MQ equal to ME; Q will be the centre of gravity of the
area CFH, representing the volume displaced when the vessel
is inclined. Let G be the centre of gravity of the vessel; and,
thrdugh E, draw ET perpendicular to MF; and, through G,
draw GZ perpendicular to MF, intersecting that line in the
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point Z: GZ is the measure of the vessel’s stability. For, since
Q is the centre of gravity of the volume immersed, when the
vessel is inclined, and the line MF is drawn through it, per-
pendicular to the water’s surface CH, QM will be the direction
in which the pressure of the fluid acts, to turn the vessel round
an axis passing through G; and GZ, being the perpendicular
distance of this line from the centre of gravity, will be the
measure of the vessel’s stability.

Let the sine of the angle of the vessel’s inclination ASH, or
OMF, be represented by the letter s to radius=1: by the

2DA3 . BAs® . if
3xarea BOA ~ 12zxarea BOA ’ ™7

therefore, BA be made =1¢, ME = '---—--f—-—; and ET

12 xarea BOA

= Tz x area BOA '

The area representing the volume displaced is here con-
sidered as entirely circular: but if it should be of that form
only to the extent of the sides *AH, BC, the remaining part of
the area being of any other figure, and the whole area un-

der water should be denoted by V, the line ET will be

3s area BOA

e 3s X
= 7% aaBor X v — Of EF"“T{\?" Let GE be denoted

by d; then ER =ds, and RT, or the measure of the vessel’s
stability +GZ = -2~ — ds.

properties of the circle ME =

* Proposition and observations in pages 213, 214.

+ In this expression for the measure of stability, s is the sine of the angle of the
vessel’s inclination, whatever be its magnitude: this value, for the stability of vessels
which have a circular form, is the same with that which M. BoucuEr gives for ves-
sels of any form, when the angles of inclination are evanescent, the breadths at the
water-line being = #, and the other conditions the same ; from which circumstance,
the following remarkable conclusion is inferred: if the measure of stability should be
calculated for finite angles of inclination, by the rule M. BoucuEr has given for the

Kk ¢
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Let i =100, s=sin. 15°torad. = 1. d =13, V= g60o.
According to these conditions, GZ = 2.63. If, therefore, the
vessel’s weight should be 1000 tons, the stability will be equi-
valent to the weight of 1000 tons, acting to turn the vessel at
the distance of 2.63 from the axis passing through G, or equi-
valent toa weight of 52.5 tons, acting at a distance of 50 from
the axis.

CASE XI.

The vertical sections of a vessel are terminated by the arcs
of a conic parabola.

Let the parabola BLA (fig. 2o. ) represent a vertical section
of a vessel, floating with the axis DL perpendicular to BA,
which coincides with the water’s surface. G is the centre of
gravity of the vessel. Suppose a ship, so formed, to be inclined
from the upright through a given angle MOI. The breadth
 BA, and depth from the water-line, DL, being given, it is re-
quired to construct the measure of the vessel’s stability.

The principal parameter being given from the conditions of
the construction, from the vertex L set off LF, equal to a fourth
part of the parameter: F is the focus of the parabola. In the
line LF, take LI to LF, as the tangent of the given angle
MOI to radius; and, in the line LI, take LX to LI, in the
same proportion of the tangent of the angle MOI to radius.
Through the .point X, draw XV perpendicular to XL, inter-
secting the curve in the point V; set off LN equal to XL+
join NV, which produce indefinitely, in the direction NVW;

angles of inclination that are evanescent, the stability of all vessels, at equal inclina<
tions, thus calculated, whatever be their forms, would be the same as if the vertical
sections were circular ; the breadths at the water-line, position of the centres of gravity.
and other elements, being the same.
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NW is a tangent to the curve in the point V: through the
point V, draw VK parallel and equal to DL; and, through the
point K, draw CH parallel to NW: let DL be divided into five
equal parts, and let LE be taken equal to three of those parts:
make VQ equal to LE; and through Q draw Pr perpendicular
to NW; through G draw GZ perpendicular to rP: GZ is the
measure of the vessel’s stability, when inclined from the upright
through the given angle MOI. The demonstration follows.
Through E, draw ET perpendicular to I'P; and, through G,
draw GR parallel to TP ; let the parameter of the curve be de-
noted by p.
By the construction, LX : LI ::LI:LF ::tang. MOI to rad.
therefore - LX: LF :: tang> MOI : rad.* and

and - LX: 4LF :: tang.* MOI : 4rad.”
By'the properties of the curve,

LX: XV::XV : 4LF
wherefore - LX:4LF:: LX* : XV2,
But - - LX:4LF::tang.* MOI: 4rad.”
therefore - LX* XV* :tang.* MOI : g4rad.”
and - - LX: XV::tang. MOI: erad.

or, since LX = 1XN
~ 4XN: XV::tang. MOI: 2rad.

or - - XN: XV::tang. MOI:rad. but, by
the construction, XN: XV: :teing. XVN :rad.
consequently tang. XVN is equal to the tangent of MOI to the
same radius; and therefore the angle XVN is equal to the
angle MOI, or the given angle of the vessel’s inclination from
the upright. Moreover, since it appears from the construction,
that the angle XVN is equal to the angle NI'P, NT'P is equal
to the vessel’s inclination from the upright, and because the
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line BA is parallel to XV, and the line CH parallel to NW,
by the construction, it follows, that the angle ASH is equal
to the angle XVN; wherefore the angle ASH is also equal to
the angle MOI, or the given angle of inclination from the
upright. VK being parallel to DL, and therefore a diameter of
the curve to the point V, and CH being drawn parallel to
NVW, which is a tangent to the curve in the point V, it
follows, that VK bisects the line CH in the point K; KH
therefore will be an ordinate to the diameter VK: and, since
VK is by construction equal to DL, and DL, VK, are ab-
scisse of the segments BLA, CVH, respectively, it is known, ‘
from the properties of the figure, that the area of the segment
BLA is equal to the area of the segment CVH; and conse-
quently the area of the figure ASH will be equal to the area of
the figure BSC. And since, when the vessel floats upright, the
line AB coincides with the water’s surface, and the area of
the segment ALB is equal to the area of the segment CVH,
it follows, that when the vessel is inclined from the perpendi-
cular, through an angle ASH, equal to the given angle MOI,
the surface of the water will intersect the vessel in the line CH.
Moreover, since LE is to LD as g to 5, by the construction, and
VQ is to VK in the same proportion of g to 5, by the proper-
ties of the figure, E is the centre of gravity of the area BLA,
and Q is the centre of gravity of the area CVH, which repre-
sents the total volume displaced, when the vessel is inclined
through an angle ASH, or MOI; and the line I'QP being, by
construction, drawn perpendicular to the water’s surface CH,
will be a vertical line passing through the centre of gravity Q of
the volume displaced CVH : and GZ, drawn through the centre
of gravity G, perpendicular to this line, will be the measure of
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the vessel’s stability, when inclined from the perpendicular
through the given angle MOI.

From the preceding construction and demonstration, a pro-
perty of stability is inferred, which may be expressed in the
following proposition.

If the vertical sections of a vessel are terminated by the arcs
of a conic parabola, and the sides of another vessel are parallel to
the plane of the masts, both above and beneath the water-line,
the stabilities of the two véssels will be equal at all equal in-
clinations from the upright, if the breadths at the water-line
BA, and all the other conditions, are the same in both cases.

It is thus demonstrated :

For brevity, let the angle of inclination from the upright,
or the angle ASH, be denoted by the letter S; let BA =14,
and LD =a: rad. = 1.

From the preceding construction and demonstration, it ap-
pears that XV : XN ::1:tang. S, and by the properties
of the figure £ZXN: XV :: XV :p,  joining these

ratios - 1 : 2 ::XV:pxtang. S.
Wherefore XV = !ii‘-t-zf’-g-:-s-,
and XL—-—&K-—M&-—LN
o T 4 T

also, since XV :NV::cos. S:1,

_ XV pxtang.S
NV = cos.S T z2xcos. S

and because LD=VK =g, and LE = VQ = -is‘i-,
and the angle VQP = ASH = MO], it follows that

- in.
VP = -3-‘-’—’-‘5—”“—-; and therefore

NP =NV 4 VP = tha"g_-ﬁ_'_ 3a X sin. S;

2% cos. S 5
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P__ P 3a pxsec‘S 34
therefore, IN= s = —t0e - = = +
and  Lr=TIN—LN = pxsec"s+ 3a _pxtang.zs_
4 %
and, since LE = 5" ,
— P Xsec*S b x tang2 §
TE = > e,
or TE = -i’—- x sec.” S + 1, and, since the angle

ErT = SET_I’X:'"S sec’S + 1,

or ET = ?-3‘—%‘———"g's x cos. S + sec. S.

This is the value of the line ET, when the area represent-
ing the volume immersed is terminated throughout by the

—é—;—)— or —%— x BA x DL
but, if that form should extend to the sides AH, BC, only, the
remaining part of the volume immersed being of any other
figure,* and this entire volume should be of any magnitude
p x tang. S 3

parabolic arc, the said area being =

V, the value of ET corresponding will be Z X GV
x COs. S -+ sec. S, or ET=4ixtne S % €0s. S 4-sec.’S. And,

24V
since ER=d x sin. S, TR, or the measure .of the ves-

, s 5 : .
sel’s stability, GZ = xzjl\r,lg 2 x Cos. S + sec. S — d x sin.'S;

precisely the same quantity which measures the stability at
the angle of inclination S,f when the sides are parallel to the
masts above and beneath the water-line: a coincidence not a
little remarkable, and such as would not probably have been
supposed to exist, except from the evidence of demonstration.
From this proposition it is inferred, that if the sides of a

® Sece pages 213, 214, + Case 1. page 216.
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vessel coincide with the arcs of the conic parabola, and the
sides of another vessel coincide with the arcs of another conic
parabola, whatever be the form thereof, varying according to
the parameter, the weights of the vessels, breadths at the
water-line, and the other conditions being the same in both
cases, the stabilities of the two vessels, at all equal angles of
inclination, will be equal. If, for instance, the forms of two
vessels should be such as are represented in Tab. XII. fig. 21.
and fig. 22. the weights and other conditions being the same,
the stabilities of each of these vessels will be equal to that of a
vessel PBQFAK, the sides of which are plane surfaces, parallel
to the masts. ;

The propositions immediately preceding, relate to the conic
or Apollonian parabola: they have been inserted, with a view
of establishing and extending the theory of stability. It may
also be remarked, that the sides of vessels are in some instances
constructed nearly of these forms; for the same reasons, it
may be not altogether useless, to examine on what principle the
stability of vessels is to be investigated, when the forms of the
sections are parabolic curves of the higher orders, such as are
represented in fig. 23. The line ¢BCO is a conic or Apollonian
parabola, d BDO is a cubic, and e BEO a biquadratic parabola.

JBFO (fig. 23.) is a parabola of 8 dimensions,’and gBGO
a parabola of 5o dimensions, which are drawn from a geome-
trical scale, in order to give a true representation of the forms
of these curves.

The general equation, determining the relation between the
abscissze and ordinates of any parabola, of the dimensions #, is
y'=p""* x x, if the ordinates are drawn perpendicular to the
axis of the curve; and y =a + px 4 q2* 4 rz’, &e. + va?,

MDCCXCVIII, L1
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if the ordinates are drawn parallel to the axis; y and x signi-
fying the ordinate and corresponding abscissa; the other let-
ters denoting constant or invariable quantities, to be determined
by the properties of the figures. In these figures, it is observ-
able, that the breadths toward the vertex O, are always greater
in the curves which are of the higher dimensions; and, as the
dimensions are continually increased, the figure approaches
more nearly to a rectangular parallelogram,* with which it

* The radius of eurvature of the conic parabola at the vertex (fig. 23.) is half the
principal parameter ; but, in all the parabolas of the higher orders, the radius of cur-
vature at the vertex is infinite. Suppose x to represent the abscissa, or distance of the
ordinate y from the vertex, measured along the axis of the curve : as # increases from
0, the radius of curvature decreases till it becomes a minimum, and then increases: a
difficulty seems to arise respecting the magnitude and variation of the radius of cur-
vature, when, the dimensions being increased sine limite, the form of the curve ap-
proaches continually, and ultimately coincides with, the rectangular parallelogram. If
the equation of the curve be 3 = pn—1 x x, where p represents the parameter, the
radius of curvature of the curve at the extremity of an ordinate y, of which the

2n—2 2N —2 %
. . . nxzx " +p " ) .
abscissa is &, will be found = p x ———“—————, which quantity

nxn—=1xXp " xz ”
n

. - ne—z pu .
is a minimum when 2 = p ® -z-—ns——-;l-;r” %: consequently, the least radius of cur-

. Ne—2 .. .
vature itself, or r == p X = and, when n is increased sine

3 2%
n—1 % 21— n® \ oS
n* N2

limite, the abscissa corresponding to the least radius of curvature, or # = p x

— ¢ ]
v 2 xn

. 2 . -
and the least radius-itself, or 7 = p X -;;zz’ both of which quantities are evanescent,
shewing that if the dimensions of the parabola are increased sine limite, the curvature
at the extremity of the ordinate, when the abscissa = o, is infinite, the radius of cur-"
 vature being nothing, as it ought to be, at the poist H of the parallelogram BHOD,,
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ultimately coincides, when the dimensions are increased sine
limite. This extreme case has relation to the subject of stabi-
lity : for, whatever may be the effect of giving to the sides of
ships the forms of the several higher orders of parabolas, it is
certain, that as the dimensions of these curves are increased,
the stability will approach to that which is the consequence of
making the sides parallel to the masts ; but it has been shewn,
that when the sides coincide with the form of a conical para-

considered as a parabolic curve of infinite dimensions, the two portions of the curve
BH, HO, (fig.23.) being inclined at a right angle, when coincident with the sides of a
rectangular parallelogram: but, since the curvature is nothing at the vertex O, the ab-
scissa being then = o, and before the abscissa has increased to any finite line, the cur-
vature at the extremity of the corresponding ordinate OH is infinite; and since the cur-
vature between the points O and H must necessarily pass through all the intermediate
gradations of magnitude, it becomes a question to define the abscissa and correspond-
ing ordinate, when the radius of curvature is a finite line: 2dly, when it becomes eva-
mescent ; and, lastly, when it is again infinitely great. By referring to the preceding
expressions for the abscissa and corresponding radius of curvature, it is found, that if

p represents the parameter, and 2 is made = 71: —, (the number z denoting the dimen-

sions of the curve,) when » is increased sine limite, the radjus of curvature will be
greater than any line that can be assigned : and such is the curvature of any portion of

the line OH, between the points O and H, 2dly, if x is = P the radius of cur-

n*
vature will be = p, the ordinate approximating to equality with the line OH. 3dly,

p

ifr= —— the radius of curvature will be smaller than any finite line : and, lastly,

if £ = p, or any finite line, the radius of curvature will be greater than any assignable
line : which conclusions are immediately inferred from the equation expressing the

27N =2

27— ;\%
n 7n
. nxx
radius of curvature, or 7 — p X +2
n 2
- —

» when the number of di-

no—1

—— —
n

nXn—1xXp X z

wmensions n is increased sine limite, these successive changes in the radius of curvature
faking place while the abscissa & is increased from o to any finite magnitude,

L12
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bola*, the stability < is the same as when the sides are plane
surfaces, parallel to the plane of the masts. It is inferred that
if the sides of a vessel are formed to coincide with a parabola
of the lowest, and the sides of another vessel with a parabolic
curve of the highest dimension, all the other conditions being
the same, the stabilities of the two vessels will be equal in
these two extreme cases.

In procéeding to ascertain the stability of vessels, the verti-
cal sections of which coincide with any parabolic curve, the
rigid strictness of geometrical inference cannot be well pre-
served, when the oblique segments are objects of consideration,
on account of the complicated properties of the figures.] But,

“in these and similar cases, methods of approximation may be
‘employed, by which the stability corresponding to any given
figure of the sides may be inferred, to a degree of exactness .
exceeding any that can be necessary in practice. "These me-
thods of approximation are either such asare required for the
mensuration of curvilinear areas, or geometrical constructions
which exhibit the lineal measures of stability not strictly and
rigidly true, but approaching, as nearly as may be desired, to
the true and correct measures.

The methods of approximation to be used for the quadra-
ture of curvilinear spaces, are founded on Sir Isaac NEwToON’s
discovery of a theorem, by which, from having given any

* Case x1. pages 2§55, 256.

4+ 'The comparative stability, in this and similar observations, is understood to im-
ply, that the vessels are inclined at equal angles of inclination from the upright, all
the other conditions (the shape of the sides excepted) being the same.

1 The areas of any parabolic segments, either direct or oblique, are geometrically
quadrable, but, in the oblique segments, the positions of the centres of gravity are not
determinable generally by direct methods.
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number of points situated in the same plane, he could ascertain
the equation to the curve which would pass through them all:
and, by means of this equation, was enabled to express the
ordinate in the curve, corresponding to an abscissa of any
given length, as well as the area intercepted between any two
of the ordinates. This discovery the author himself considered
amongst his happiest inventions. Amongst the various uses of
this theorem, that of determining by approximation the areas
of curvilinear spaces is not the least considerable: for, by
this means, the fluents of fluxional quantities, not discoverable
by any known rules of direct investigation, are found, to a de-
gree of exactness fully sufficient for any practical purpose, and
with very little trouble of computation.

- Mr. STIRLING, in his treatise intitled Methodus differentialis,
has inserted a table for measuring curvilinear spaces termi-
nated by parabolic curves, from having given g, 5, 7, or g equi-
distant ordinates, and the abscisse on which they are erected.
The measures of the areas thus obtained are, under certain
conditions hereafter stated, not approximations, but geometri-
cally and strictly correct: the approximate values of curvili-
near spaces, in general, are obtained from finding the correct
areas terminated by parabolic lines which nearly coincide with
the said curves, by passing through the extremities of the same
ordinates.

The subjoined table contains Mr. STIRLING’S rules for ex-
pressing the areas of curvilinear spaces, from the conditions
which have been mentioned ; also additional rules for measuring
the areas which are included between the extremes of ¢, 4, 6,
or 8 equidistant ordinates : the whole of this table has been re-
computed and verified. ‘
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TABLE OF AREAS.
Number of equi-

distantordinates. Areas.
A
2 7% R
A B
3 +64- « R
A B
4 ';3 x R
A B C
5 78+ 325 412 « R
9o
19A 4 75B 4+ 50C
6 288 x R
41A 4 216B 4 27C 4 272D
Vi 540 x R
8 36799 A + 175273 B 4 64827 C + 146461 D R
' 846720 x
89 A 888 B — g28C 6D — E
9 9394 45 928 L 4 1049 4540 « R
28350

In this table, the letter A denotes the sum of the first and
last ordinate of the number opposite to it in the first column :
B is the sum of the second and last but one: C is the sum of
the third and last but two, and so on. The extreme letter, sup-
pose D, (as in the rule opposite 8 ordinates,) is the sum of the
two middle ordinates, if the number of ordinates is even; or the
extreme letter, suppose D, (as in the rule opposite % ordinates,)
is the middle ordinate alone, if the number of ordinates is odd.
R is the entire length of the abscissa, which is always equal to
the common interval between the ordinates, multiplied by the
number of ordinates diminished by unity.

Let the area to be measured be terminated by the curve line
ABCD, &¢. (Tab. XIII. fig. 24.): A’l' is an abscissa, on which
a number of equidistant ordinates AA/, BB/, CC/, &c. are erected
atright angles. If ABCD,&c. represents a parabolic line of any
dimension, suppose 7, the relation between the ordinates and ab-
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scisse being expressed by the equation y=a + px + q 2"+ 2’
&c. 4 ua”, (in which case, the ordinates are drawn parallel to
the axis of the curve,) a measure of the area contained between
the extremes of # 4 1 ordinates will be obtained with geome-
trical exactness, by computing from the rule in the table which
is opposite the number of ordinates # 4 1, supposing the table
to extend to that number : but if, as it usually happens in cases
which practically occur, that the nature of the curve is un-
known, or the conditions in other respects different from those
which are required for the mensuration of the area with perfect
correctness, it becomes a question, which particular rule in the
table should be adopted for inferring an approximate value of
the area, since an exact quadrature is not obtainable. For this
purpose, there are several reasons for preferring the rules oppo-
site the number of ordinates 2, g, and 4 to the others, which
require a greater number of ordinates; the common distance
between them being the same. In the first place, the rules
here pointed out are far less troublesome in the application; a
circumstance which ought to have weight, although of less im-
portance than another consideration, which is, that the results
derived from these rules, particularly from the two latter, will
in general approximate as nearly to the true value, sometimes
more nearly, than those which are obtained by calculating
from the other more complicated theorems, unless the curve
should happen to be such as admits of being correctly measured
by any of the rules requiring a greater number of ordinates ;
a circumstance not likely to occur in practical mensurations.
Let it be proposed to measure by approximation any curvi-
linear space AA'I'IA (fig. 24.) For brevity, let the successive
ordinates AA', BB/, CC’, &¢. be denoted by the letters a, b, ¢,
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&e. respectively; also, let the common distance between the or-
dinates (fig. 23.) or A’B'=B'C’= C'D' be =r: according
to the theorem for measuring the area contained between two

ordinates, or—‘g‘- x R, the curve line AB is supposed to coincide
with the right line AB which joins the extremities of it;
the space measured by this rule is the trapezium AA'B'BA;
and, since A = a -} b, and R = r, the area of the trapezium, or

A —
- XR=a + b X 3
According to the rule opposite g ordinates, the curve line

ABC is supposed to coincide with a portion of the conic para-
bola, the axis of which is parallel to the ordinates. And since,
by this rule, the area = A F 3 Bx Ié, in which expression
A=a+c, B=10, and R = 2 r; by substituting these values,
the area AA'C'CA=ua +} 4b Fcx -;- If the curve ABC
should actually be a portion of the conic parabola, the given
ordinates being parallel to the axis of the curve, the area
AA’C/CA will be measured by this rule with exactness abso-
lutely perfect; and, the more nearly the curve which terminates
the area, approaches to the form of the conic parabola, the more
nearly will the result of calculating by this rule approximate to
the true value of the area. But it is evident, that since in this
approximation, the arc of a conic parabola is drawn through the
points A, B, C, being the same points which terminate the or-
dinates of the given curve, the difference between the parabolic
area and that which is given must, in most (except extreme)
cases, be next to an insensible quantity, when applied to prac-
tical mensuration.

In the mensuration of areas by the rule opposite 4 ordinates, ,
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# parabolic curve line is supposed to be drawn through the
points A, B,C, D, of the gd dimension, such as the arc of a cubic
parabola, the ordinates of which are parallel to the axis of the
curve, and the area terminated bylt'h'is curve line is assumed
to approximate to the given area AA’D'DA : by this rule, the
area=A + g B x%, in which expression A=a 4 d,B=0b+y¢,
and R = gr, which being substituted for their respective values,
the area AA’D'DA =a+38b+Fgc+dx 3-85.

In order to bring these rules into a form convenient for prac-
tical use, let it be proposed to measure the area AA’G'GA (fig.
24.) intercepted between the extremes of % ordinates.

1st. Suppose the right lines AB, BC, CD, &¢. to be assumed,
instead of the curve lines AB, BC, CD, &c. as terminations of
the space to be measured: then the area AA’G'GA will be
equal to the sum of six trapeziums; AA’B'B, BB'C'C, CC'D'D
and so on.

The area of the trapezium AA’'B'B = mx -2, by the
rule opposite 2 ordinates: by the same rule, the area of the
trapezium BB'C'C = b + ¢ x ‘f; the area of the trapezium

CCDD=c+4dx g, and so on. By adding these six sepa-
rate areas, the sum will be the area of the space AA’G'GA
=a+2b+teoctedfeet2f+gx’. Thelawof con-

tinuation for a greater number of ordinates is obvious. This
rule is precisely the same with that which is given by M.
BouGukr, in his work entitled « Traité du Navire,” * under
a form somewhat different: his rule is this; from the sum of
all the ordinates subtract X of the sum of the first and last; the

* Page 112,
MDCCXCVIII. Mm
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result multiplied into the common distance between the ordi-
nates will be the exact area of the figure, considered as con-
sisting of trapezia, and an approximate value of the curvilinear
area in which the said trapezia are inscribed. This rule he pro-
fesses not to be a very correct approximation, but such as may
be deemed sufficient for most practical mensurations. It must
be acknowledged that in mensurations independent of others,
the errors arising from this rule are often not considerable,
(in many cases they are very small;) but, considering that in
naval mensurations, areas obtained by approximation are ne-
cessarily the data from which other results are to be inferred,
also by approximation, a doubt may arise whether the errors
thus accumulated may not, in some cases, become too great;
at least it may not be improper to be provided with rules which
may be relied on, as approx1matmg more nearly to the true
measures of areas.

Let the same area be measured by the rule opposite g ordi-
nates, according to which it is supposed that the curve line
ABC coincides with the arc of the conic parabola. By this

rule, the area AA'C'CA = a+ 4bF cx g also the area
CCEEC =c¢ + 44d F e x -;-; and the area EE’'G'GE
=c¢+Faf+gx 5+ adding these three areas together, the
sum is the area AA'G'GA=a +4b+2c+4d+2e+4f+g
X = |

3
This rule is the same with that which Mr. Simpson has de-

monstrated in his Essays, page 109, from the properties of the
conic parabola, perhaps not noticing that it was to be found in
Mr. STIRLING’s table of areas.
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Mr. CuaPMAN, an eminent author on the subject of naval
architecture,* applies this theorem to naval mensurations, as a
substitute, and certainly an useful one, to the less perfect rules
which are employed for this purpose, in the works of M. Bou-
GUER and other authors. The example by which Mr. Cuapman
illustrates the use of this rule is the same with that which is

given in Mr. SimpsoN’s Essays.
This approximation to the measures of areas being applicable

* The following observation on this theorem is inserted in the Report from the
Committee of the French Royal Marine Academy, who were appointed to examine
the translation of Mr, CHarman’s Treatise on Naval Architecture, by M. Viar
pe CLarrBo1s; this report is preﬁxed to the French edition of Mr. CHapmaN’s
work.

¢¢ Ce célebre constructeur commence par donner une nouvelle méthode de calcul de
< déplacement, qui sans étre beaucoup plus longue que celle que I’on emploie com-
‘¢ munément, donne un résultat infiniment plus exact. On considére ordinairement
« les parties curvilignes des plans de flottaisons, ou de gabarits, entre les extrémités
«¢ des ordonnées, comme des droites; M. Cuarman les regarde comme des parties
¢« paraboliques ; et, de la nature de cette section conique, et du trapeze, il tire une
< expression sur laquelle il fonde un calcul assez simple,” &c.

A comparison of the results derived from this rule, and from that which is em-
ployed by M. Boucukr, does not seem to confirm the opinion of the very superior
exactness which the committee here attribute to the former rule: that it is more exact
there is no doubt, especially when the curvature is at all irregular in respect to its varia-
tion, and the results inferred are data on which other computations are to be founded ;
but, in many of the cases which occur in practical mensurations, the latter rule ap-
proximates to the required results sufficiently near the truth, as will appear by the
instances in the subsequent pages. The expression ¢ une nouvelle méthode” can-
not be understood to mean a rule of computation newly invented, but one which
Mr. Cuarpuman has first applied to naval mensurations. In this sense, the theorem
inserted in the 265th and 268th pages of these papers would be entitled to the appel-
‘lation of ¢ a new method :”” but it has already been shewn, that the three rules here
described, and employed in the computations which follow, are only particular cases
of the general method demonstrated in the works of Sir L. Nswrox\ » STIRLING,
Si1mpson, and other authors. ‘ ‘

Mme
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only when the number of given equidistant ordinates is odd,
to obtain the area when the number of ordinates is even, an-
other rule, to be employed either singly, or in conjunction with
the former, may be selected from Mr. STIRLING’s table of areas.
It is that which stands opposite 4 ordinates.

Let it be proposed to measure the area AA’G'GA. Accord-

ing to this rule, the area AA"D’DA =a+3b+ 3¢ + d x §§f

also the area DD'G'GA=d + ge+ 3/ + g * &
these two areas being added together, the sum will be the area
ANGGA=a+t gbtgctedtgetgftgxi
‘When the number of given equidistant ordinates is small, these
theorems will be most conveniently used in the forms here given;
‘but, when the ordinates are numerous, the trouble of arithme-
“tical computation will be considerably abridged, by employing
them according to the general rules inserted underneath.
These theorems for approximating to the values of areas, may
be applied, with advantage, to the integration of fluxional quan-
tities, the ﬂuents of which cannot be obtained by direct methods;
or,if obtained, requiring very long and troublesome calculations.*
- Suppose  to represent the abscissa of a curve, on which the or-

# On this principle, the rules of approximation here given are applicable to deter-
mine the positions of the centres of gravity, both of areas and solid spaces. If y is put
to represent the ordinate erected perpeﬁdicular to an abscissa, at the distance z from the
initial point thereof, the fluent of yz% (fig. 24.) will be the sum of the products ari-
sing from muitiplying each ordinate into the small increment %, and also into the dis-
tance z from the initial point. And, since the area intercepted between the ordinates
AA'and y is the fluent of yz, it follows, that the distance of the centre of gravity
of this curvilinear space from the ordinate AA’, measured on the abscissa A'l', is

~ fuent yzz ‘
= fuentyz

. The approximate values of these fluents are obtained from the Rules 1. 170
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dinates (expressed by Z, a general term or function of ), 4, b, c,
d, &c. are erected at right angles, and at intervals each of which
is=r, sothat whenz==0,Z ==a: whenz =7, Z=5: when
%z =2r, Z=c, and so on. If innumerable ordinates or values
of Z be supposed drawn between each of those which are given,
‘at the common very small interval 2, the sum of the products
arising from multiplying each of the ordinates into the incre-
ment 2, that is, the fluent of Zz, will be found, by approxima-
tion, according to the three following rules; which may be not
improperly termed, rules for approximating to the integral va-
lues of fluxional quantities. According to

RULE 1.

Fluentof Zz = P — % x 73
in which expression,
P = the sum of all the ordinates @ 4 b 4 ¢ + d, &c.
S = the sum of the first and last ordinate.
r = the common distance between the ordinates.

RULE II.

Fluentonlz=S+4P+ 2 Q x-;-;

in which expression,

S = the sum of the first and last ordinate.

== the sum of the 2d, 4th, 6th, 8th, &¢. ordinate.

Q = the sum of the 3d 5th, #7th, gth, &¢, ordinate, (the last
excepted. )

r == the common distance between the ordinates.
and 111. 5 and the positions of the centres of gnavity are thus determined according to

the methods of computation employed in the subsequent pages. The position of the
centre of gravity. in solid bodies, is determined by a similar application of these rules.
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RULE III.

Fluentof Zz=S 43P 4 3Q x3;
in which expression,

S ==:.the sum of the first and last ordinate.

P = the sum of the 4th, 7th, 10th, 13th, &c. ordinate, (the last
excepted.)

Q = the sum of the od, gd, sth, 6th, 8th, gth, &¢. ordinate.

r == the common distance between the ordinates.

It is to be observed, that the first of these rules approximates
to the fluent, whatever be the number of given ordinates. The
second rule only requires that the number of ordinates shall be
odd. To apply the third rule, it is necessary that the number
of ordinates given shall be some number in the progression 4,
%, 10, 18, &c. that is, the number of ordinates must be a mul-
tiple of g increased by unity. But, in every. case, the approxi-
mate fluent may be obtained, either from the Rule 11. or the
Rule 111. or by employing both rules conjointly.

Before these theorems are applied to practical mensurations
in naval architecture, it may be satisfactory to examine, by a
few trials, to what degree of exactness they approximate to the
correct values of curvilinear spaces. This will be known, if the
area of some curve, which is exactly quadrable by other geome-
trical rules, be measured by them. Such as a parabolic figure of
which the equation is y* = p’ z, z being the abscissa coincident
with the axis, and y the corresponding ordinate perpendicular
to it.

The semi-area of this parabola (fig. 25, 26.) is known to

be zy x -3—; and the curve is termed a parabola of 8 dimen-
sions.
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OD is an abscissa, being a portion of the axis of this curve,
and the parameter is assumed = OD. If, therefore, an ordi~
nate BD, or DA, is drawn through the point D perpendicu-
lar to DO; the lines DB, DO, and DA, will all be equal.
Let BD be divided into 10 equal parts,* considered in this in-
stance as an abscissa, on which, at the points of division, the
several ordinates are erected perpendicular to BD, denoted in
the figure by the letters a, b, ¢, d, &c. If BA is assumed = 100
equal parts, DB, DO, and DA, are each = 450, and the common
interval between the ordinates = 4; the numerical values of
the successive ordinates a, b, ¢, &c. are expressed in the an-
nexed table. : '

= 50.0000| According to the Rule 1. making

a

b == p50.0000|the sum of all the ordinates, or P

¢ =499999| = 466.1341, the sum of the first and

d = 40.9967 last ordinate, or S = 50 : r=5 = the

e ‘ "-::4‘99672 - ). - . ——5 o]

f = 49.8047| common distance of the ordinates..

g  =4916021  The grea BDO = P—= x 7

h | =47.1175 2

i = 41.6113 == 2205.670

/; ==28.47766| correct area = 32%3°%X8  — 9090.929
= 0.0000} ——

Sum of all the — Difference-} or error of
ordinates = 466.1341| the approximation = 16.552

* Any line being assumed in a curve as an abscissa, lines drawn parallel to each
other, and intercepted between the abscissa and the curve, are termed ordinates. 'To-
exemplify these rules for approximating to the areas of curvilinear spaces, it was ne-
cessary to consider the ordinates as being drawn in some cases parallel, and in others
perpendicular, to the axis.

+ It must not be concluded, from this instance, that the errors in measuring cur-
vilinear areas by the Rule 1. will be usually so great as 16 parts in 2222. In applying
the Rule 1. to this parabolic space, the quick variation of curvature in some parts of
the curve, causes the space so measured to deviate more from the truth than would
happen in ordinary cases, such as commonly occur in practical subjects. If, instead of
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If the same area is measured by the Rule 11. the process will
be as underneath :
Sum of all the ordinates - = 466.1341
Sum of the first and last, or = 50.0000
Sum of the 2d, 4th, 6th, &c. or P = 225.3955

S+ P = 275.3955 275.3955

Sum of the gd, 5th, 7th, &c. (except the last) or Q == 190.7386
and r being = 5, the area BDO = W x% = 2221.765
Correct area - = 2222.222

Difference or error of thé approximation = 457

Let the same area be measured by the Rule 111. the area

DOKI, between the two ordinates a and b, being = 5 x 50

= 250, the remaining area, from the ordinate b to the ordinate
l = o, will be obtained from the following computation :

The sum of all the ordinates = 416.1841
Sum of the first and last, reckoning
b the first, and the last /=0 or S = 5o0.0000
Sum of the 4th, 7th, 10th, &c. (b being
the 1st.) or P - - = 97.0847  147.0847
Sum of the 2d, 3d, s5th, 6th, &¢. from b, or Q = 269.0494

the total area = DBO, (fig. 25.) a portion of it, which is contained between the ordi-
nates ¢ and g, should be measured, the area, computed from either of the three rules,
would deviate very little from the truth, as appears from the following results.

Areas contained between the ordinates 4 and g,

computed by  Rule 1. Rule 11. Rule 111,
Areas 1496.74 1497.17 1497.13
Correct area  1497-20 1497.20 1497.20
Difference or error of —_— _— S—
approximation - .46 ' .03 .07

If the rule in the table of areas opposite 7 ordinates should be applied to measure
the area between the ordinates 4 and g, (fig. 25.) the result would be geometrically
correct.
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And, since r = 5, the area between the ordinates

band! =S4 2P+ 3Qx % - = 19771.220
Area IKOD between the ordinates  and b = 250.000
area BDO - - == 2221.220

Correct area BDO - - . =2222.222
Difference or error of the approximation =  1.002

In applying these rules, it is necessary to observe, that if
the ordinates are drawn perpendicular to the axis of the curve,
whenever the area to be measured, or any part of it, is adjacent
to the vertex O, the area found by these rules will be the least
exact: in such cases, it will be requisite to assume an abscissa
near the vertex O, perpendicular to the axis: by erecting equi-
distant ordinates upon it, parallel to the axis, the area will be
found, with the same exactness as in the other cases, which will
appear by the following computations.

DOA (fig. 26.) is a semiparabola, similar and equal to DOB.

Let the line DO = 50 be divided into 10 equal parts, each
= 4; and, through the points ‘of division, let the succes-
sive ordinates b, ¢, d, &c. be drawn perpendicular to DO:
according to the preceding observations, if the entire area DOA
should be computed by either of the three rules, the result
would be less exact than in the former cases. To obtain an
approximate value of the area, sufficiently near the truth, a por-
tion of the area adjacent to the vertex O, suppose XEQO, is to
be separately computed. If OX be = 10, the line XE will
= 40.8890, which being divided into six equal parts, each of
them will = 6.815: let the ordinates p, q,'s, t, &¢. be erected at
the points of division, perpendicular to XE:

MDCCXCVIII, ; Nn
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10.0000
9-9985
9-9805
7.6%750
9.6100
00,0000

g el saats

nuagupni

= 57.2640

10.0000}

'From these ordinates, the area OXE
is found by the Rule 1. to be

159. 8390 %

e 363 101.

For obtaining the area DAXE, the ordinates g, b, ¢, d, &e.
erected on the abscissa DX, are as expressed underneath :

a = $0.000
b = 49.346

¢ = 48624

d = 47.820

e = 46.90%
S = 4585
g = 44-590
b = 483.014|

i = 40.889
Sum of all the ———
ordinates == 417.041
k = 387-495|

[ =  0.000

'The area DAXE, between the ordi-
nates @ and i, is found by the Rule 11.
tobe - - = 18;58.760

The area between the or-
dinateiand /, before found = g63.101

*Entire area DOA = 2221.861

Correct area - = 2922.222
Difference or error of the
approximation - = = .61

» If the area between the ordinate 2 and i had been computed by the Rule 1. the
result would have been nearly the same.

‘Area between the ordinates & and 7, by Rule 1,is - 1857.98
Area between the ordinates  and /, before found, is 363.10
Entire area DOA - - = 2221.08
Correct area - - ‘- == 2222.22

Difference or error of the approximation - - L14
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If the total area DOA (fig. 26.) should be measured by one
computation, suppose from Rule 11. the

Area would be found - - =2176.8%5
Correct area - - - - = 2222.222
Difference or error of the approximation =~ - = 45.847

If this area should be computed according to
the Rule 1. the error of the approximation will be
found - - = - - = 7454
It is easily shewn, that these errors, which are far from in-
considerable, arise almost wholly from the mensuration of the
area OXE, (fig. 26.) adjacent to the vertex O. For, by measur-
ing that area, according to the Rule 1. from three ordinates
l =o, k=287.495, { = 40.889, the area is found to be g18.115
Whereas the correct area OXE = 10 x 40.889 x § = 363.457

Difference or error from computing the area OXE

by Rule 11. - - - - = 45.342
Scarcely differing from - - = 45-347
which was found to be the error from computing the entire
area DOA by this rule. ~

If the area between the ordinates ¢ and £ be measured by

the Rule 111. it is found to be - - = 2055.390
Area between the ordinate k2 and /, by the proper-

ties of the figure, is = g7.495x 5 x % - = 166.640

Entire area DOA - == 2222.030

Correct area - -  ==2222.222

Difference or error of this approximation = .192

From these computations it is evident, that the rules here
given, when employed with attention to the necessary limita-
Nn e
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tions and restrictions, will approximate to the measures of
areas, to a degree of exactness fully sufficient for naval men-
surations; and further, will be useful in determining by ap-
proximation the integral values of fluxional quantities in ge-
neral, especially those which occur in the investigation of
practical subjects.

CASE XII

‘Still supposing the vertical sections of a vessel to be equal
and similar figures, let BOA (fig. 27.) represent one of these
sections ; the figure being either a curve of the highér dimen-
sions, or a curve not formed according to any geometrical law,
of which the lengths of the ordinates, and of any other lines
given in position, are supposed to be measurable, and given in
quantity : the angle at which the vessel is inclined from the
upright, and the other necessary conditions being known, it is
required to find, by geometrical construction, a line which
shall approximate nearly to the measure of the vessel’s sta-
bility.

1st Method.

BA represents the intersection of the water’s surface when
‘the vessel floats upright: bisect BA in the point D; and,
through D, draw the line NDM inclined to the line BA at an
angle ADM, equal to the given angle of the vessel’s inclina-
tion: let the area of the figure ADMbJ, also the area of the
figure BDN¢, be found by means of the rules which have been
described : suppose the area ADM A to be greater than the area
BDNy, and let E represent the difference between them : from
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the point D, in the line DA, set off a line * DS = Fm‘%m:
a line CSH, drawn through the point S, parallel to NM,
will cut off the area ASHAA, very nearly equal to the area
BSCc¢B; (fig.27.) consequently, when the vessel is inclined
to the given angle, the water’s surface will intersect the vessel
in the line CSH. (Tab. XIV. fig. 28.) Draw the lines AH, BC.
Let M and I be the centres of gravity of the triangles ASH, BSC,
respectively ; through M and I, draw MU, 1%, perpendicular to
CH; through b, the centre of gravity of the area AbH, draw
bU perpendicular to SH; and, through ¢, the centre of gravity of
the area B¢C, draw ¢R perpendicular to CH : in the line /U,
take /L to LU as the area AH A is to the area ASH A ; and, in the
line kR, take 2K to 2R as the area B¢ C is to the area BSCec.
Let G be the centre of gravity of the vessel; and let E be the

centre of gravity of the displaced volume when the vessel floats

* Let the area ASH b be supposed equal to the area BSCc, (fig. 27.) and make either
of them — A. Let the space DMHS be denoted by M, and the space NDSC by N :
then the area ADM b will approximate very nearly to the quantity A -+ M, and the
area BDN to A — N. The difference of these areas will be M 4 N, which is equal to

the area NMHC — E =— MN x DY ; and, consequently, DY =

; and, because
E
MN xsin. ADM -
+ In these small curvilinear spaces, it will be sufficient to assume the positions of the
centres of gravity by estimation, on a supposition that the curve coincides with the
arc of a common parabola ; in which case, the centre of gravity is situated at the dis-
tance of Z of the abscissa from the ordinate, or chord which joins the extremities of
the curve. 'The position of the abscissa is determined by drawing chords parallel to
the given chord, and by drawing a line through the points which bisect the several
chords. But, when the curvilinear spaces AHb are extremely small, as represented in
this figure, (fig. 28.) no sensible difference in the result will ensue, whether the line
bU is drawn through the centre of gravity of this curvilinear space, or through any
other point which is adjacent to that centre.

E
N
DY : DS : : sin. DSY, or ADM to radius, it will follow that DS =
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upright. Through the point E, draw EV parallel and equal to
KL: and, in EV, take ET to EV as the area ASHJ is to the
area representing the entire volume displaced: through G,
draw GU parallel to CH; and, through T, draw TZ perpendi-
cular to GU, intersecting the line GU in the point Z. GZis
the measure of the vessel’s stability.

od Method.

Let BOA (fig. 29.) be the given vertical section of a vessel, in-
tersected by the water’s surface BA when floating upright. G is
the vessel’s centre of gravity: E is the centre of gravity of the vo-
lumedisplaced in the upright position. Let the area BOA be mea-~
sured by eitherof the three Rules, suppose Rule_ 1.; and through D,
the bisecting points of BA, draw NDM inclined to the line BA
in the angle ADM, equal to the given inclination of the vessel
from the upright. Let the area NOAM be measured, by erecting
equidistant ordinates on the line MN. If the area, so found, is
equal to the area BOA, the area DBN will be equal to the area
ADM. But, if they are unequal, let the difference be represented
by E,and from D, toward the largest of the areas, suppose ADM,

set off DS = S}?n. -5 > and, through S, draw CSH pa-

rallel to NM. The area ASHA will approximate to equality
with the area BSCc; and, consequently, when the vessel is in-
clined through the given angle ASH, it will be intersected by
the water’s surface in the line CH. On the line HC, let the
equidistant ordinates a, b, ¢, d, &c. be erected perpendicular to
CH; and let the common interval between the ordinates be
=r. Let the measure of the area CLFK be obtained, and let
m be the centre of gravity of this area: through the point m,
draw mP perpendicular to CH: let each of "the successive
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given ordinates be multiplied into its perpendicular distance
from the ordinate a. 'The terms resulting will be a x o, b x 7,
cxer, dxgr, &c; let these terms be added together, and
half the sum of the first and last term being subtracted from
the amount, let the result be denoted by theletter C; Cr— area
CLFK x KP will be the sum of the products arising from mul-
tiplying each evanescent area QX into its distance QK from

the first ordinate a. In the line KH, set off a line KI*

__ Cr —area CLFK xKP
_ area COAH ,
dicular to CH; and, through the vessel’s centre of gravity G,

draw GZ perpendicular to IT. GZ is the measure of the ves-
sel’s stability, when it is inclined from the upright through the
angle ASH. '

In the cases which have preceded, the vertical sections of
vessels, or segments of vessels, are assumed as equal and similar
figures: whereas, in reality, the form and magnitude of the
sections are gradually changed, according as they intersect the
longer axis at a greater or less distance from the head or stern.
The solutions of the preceding cases, and the principles therein
established, may be next applied to investigate the stability of
vessels, taking into consideration the form and magnitude of
each particular section intersecting the longer axis at right
angles, and at equal distances; taking into account also, by
the methods which have been described, all the sections inter-
mediate between those which are given, that may be conceived
to intersect the axis at a very small common interval.

Through the point I, draw I'T perpen-

* Since the Rule 1. is employed in obtaining the value of the quantity Cr, accord-
ing to this computation, the area COAH ought to be measured by the same rule; in
which case, the line KI will be determined nearly with the same exactness as by eithet
of the Rules x1. or 111,
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CASE XIII,

- The longer axis of a vessel is supposed to be divided into a
given number of equal parts, and vertical sections to pass
through the several points of division, intersecting the axis at
right angles : the form and magnitude of each particular sec-
tion being given, with the common distance between them,
the positions of the centres of gravity of the vessel, and of the
volume displaced, and the distance of the water-section from
the keel, being known, it is required to construct the measure
of the vessel’s stability, when it is inclined from the upright
through a given angle.

Let QBOAW (Tab. XV.fig. go.) represent any vertical section
of a vessel ; suppose it to be the greatest or principal section : BA
is thé breadth of this section at the water-line, when the vessel
floats upright : let CH represent the line which coincides with
the water’s surface, when the vessel is inclined from the up-
right through the given angle ASH. From the nature of the
conditions, it is sufficiently evident that the point S, in any in-
dividual section, will not be determined on the same principle
by which the position of that point was fixed according to
~ the former solutions ; that is, by making the area ASH equal
to the area BSC; because, the volume immersed, and that
which is caused to emerge in consequence of the vessel’s in-
clination, will not now be proportional to these areas, as
they * are on a supposition that the vertical sections are similar
and equal figures. But, in the present case, the vertical sections
being different, both in form and magnitude, the water’s sur-

* See page z10.
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face, intersecting the vessel in a plane passing through the line
CH, when the vessel is inclined, will so divide the areas of the
several sections, that althdugh the area ASHA may not be equal
to the area BSCc, in any of the vertical sections, yet the volume
immersed, corresponding to, and included between, the areas of
the figures ASH b, taken from the head to the stern of the ship
shall be equal to the emerged volume which is included between
the areas BSCy, in the several sections. Suppose the breadth
of any section at the water-line* to be denoted by BA, and to
be bisected in the point D. A vertical plane passing through
the vessel’s longer axis and the centre of gravity G,+ and divi-
ding the ship into two parts perfectly similar and equal, will
pass through the points D, in all the sections: this plane may
be termed the plane of the masts. It is easily shewn, that at
whatever distance DS, from the middle point D, the plane of
the water’s surface, passing through the lines CH, intersects
the line DA in any one section, when the vessel is inclined
through the angle ASH, it will intersect the line DA at the
same distance from the middle point D in all the other sec-
tions ; that is, the distance DS will be the same in all the
sections : for, by the supposition, the vessel is inclined round
the longer axis, and consequently, the intersection of the two
planes, passing through the lines BA and CH, will be parallel

* The same letters which are used to denote the several lines, in this vertical section,
must be understood to represent the lines similarly drawn in each of the other sections.
In the present instance, BA does not represent the breadth at the water’s surface, of the
principal, or any other individual vertical section, but represents gencrally that breadth,
in any of the sections that may be referred to.

+ Represented by the point G projected on the plane BOA. The centre of gravity
E is, in like manner, here represented by projection on the same plane.

MDCCXCVIII, Oo
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to the longer axis, and. therefore parallel* to a line drawn
through all the points D, from one extremity of the vessel to
the other; the several lines DS are the perpendicular distances
of these parallel lines, and are consequently all equal. In the
next place, it is requisite to determine the magnitude of the
line DS, according to the given conditions: whatever be the po-
sition of the points S, if lines CH are drawn through S, in each
of the sections, inclined at an angle to the line BA, equal to
the given angle of the vessel’s inclination, the same plane will
pass through all the lines CH. It is required to ascertain at
‘what distance DS, from the points D, the plane CH, coinciding
with the water’s surface when the wessel is inclined, must pass,
50 as to cut off a volume on the side ASHA, being the volume
immersed, which shall be equal to the volume in the side
BSCc¢, which: has emerged from the water, in consequence of
the vessel’s inclination.

~In each section, through .the middle point D, draw a line
NDW, inclined to BA at an angle ADW, equal to the given
angle of ‘the vessel’s inclination; the same plane will pass
through the lines NDW, in all the sections. By the methods
which have been described, let the area of the figure ADWh
be measured in each section ; from these equidistant areas, the
solid contents of the volume between the two planes DA+ and
DW, and the side of the vessel intercepted, may be inferred by

“» The points D being coincident with the water’s surface, a line passing through
them muist be horizontal; and being, by the supposition, situated in the same plane
with the longer axis, must therefore be parallel to it.

4 Since the same plane passes through the lines DA, drawn coincident with the
water’s surface in all the sections, this plane may be supposed projected into the line ,
DA on the'plane DOA. For similar reasens, the line DW represents the plane which,
passes through all the lines DW. inall the sections.
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computing according to the Rules 11. and 111.; suppose this
volume to be denoted by the letter P, and the volume contained:
between the planes DB, DN, and the side of the vessel, found
by similar operations, to be denoted by the letter Q. Let the
area* of the section of the vessel passing through the lines
NDW be measured, from having given the lines NW in all
the sections from the head to the stern, and let this area be
put =R. If the volumes P and Q should be unequal, P being
the greatest, in the line DA, set off, in each section, a line DS

___Pa
T R x sin. ADW *

the points S, and inclined to the plane BA at the given angle of
the vessel’s inclination, the solid contents of the volume between
the planes SA, SH, and the intercepted side of the vessel, will
approximate to equality with the volume contained between the
planes SB, SC, and the intercepted side of the vessel. Since,
therefore, the water’s surface coincides with the plane BA when
the vessel is upright, when it is inclined round the longer axis,
through the given angle ASH, the water’s surface will inter-
sect the vessel in the direction of a plane passing through the
lines CH, in all the sections. '

If a plane CSH be drawn passing through all

Let the solid contents of the volume immersed, or'emerged,
by the inclination, be denoted by the letter A.

In the section QBOAW, let M be the centre of gravity
of the triangle ASH, and let » be the centre of gravity of the
curvilinear area AHb; also, let I be the centre of gravity of
the triangle BSC, and let ¢ be the centre of gravity of the
curvilinear area BCc: through these points, draw the lines

® That is, the area of the section coinciding with the water’s surface, when the vésd
sel is inclined to the given angle.

Ooz2
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MI, bhU, Ik, cR, perpendicular to CH; and, in the line IU,
take a line /L, which is to /U as the curvilinear area' AHA is
to the area ASHA. Through the points S, in all the sections,
let a line Ff be drawn perpendicular to SH ; the same plane
will pass through all these lines. LS will be the distance of the
centre of gravity of the area ASHA from the plane Ff. The
products arising from multiplying each area ASHb into the
distance SL, of its centre of gravity, from the plane Ff, are to be
calculated in all the sections; from which products, by means
of the Rules* 1. 11. and 111. the sum of the products arising from
multiplying each evanescent solid, of which the base is the
area ASHA, and the thickness a small increment of the axis,
into the distance SL of its centre of gravity from the plane
Ff, will be obtained. The sum of these products, divided by
the solid contents of the volume immersed A, will be the
distance of the centre of gravity of that volume from the ver-
tical plane Ff. Suppose this distance to be equal to the line
SQ: let thed istance PS, of the centre of gravity of the vo-
lume emerged, or BSC¢, from the plane Ff, be found from
similar computations; the line PQ will be the distance of the
centres of gravity of the volumes ASHA, BSCc, estimated
in the direction of the line CH, perpendicular to the plane
Ff.

The solid contents of the entire volume displaced by the ship,,
are to be obtained from the areas, either of the vertical or hori-
zontal sections.

» Whenever the Rules 1. rr. and 111, are referred to, it is meant that the compu-
tation is to be made from one or more of these rules, according ta the. number. of ar-
dinates given, or as other circumstances may direct,,

1 See Appendix..



the Stability of Ships. 285

The ordinates drawn in the several sections being set down
in regular order, the area of any horizontal section is to be
found from the corresponding series of ordinates, by means of
the Rules 1. and 111. and, by the same rules, from the areas of
the horizontal sections so determined, the solid contents of the
total volume immersed are to be inferred ; some allowance be-
ing made for the irregular parts of the volume adjacent to the
head and stern, if attention to these additional volumes should
be thought necessary. That part of the volume which is con-
tained between the keel and the nearest horizontal area, is ob-
tained by first finding the area of each vertical section between
the keel and nearest ordinate: from these areas, by means of
the Rules 11. and 111. the solid contents of the volume between
the keel and nearest horizontal section will be measured, and is
~ to be added to: the volume before found, which is.contained be-
tween the two extreme horizontal sections.

Let the solid contents of the displaced volume be denoted
by V.

From the areas of the horizontal sections, and the common in-
terval between them, the distance DE, of the centre of gravity of
the volume immersed, from the water-section, is to be obtained
by means of the Rules 1r. and 1r.; by finding the sum of the
products arising from multiplying each evanescent solid, of
which the base is any horizontal section, and the thickness a
small increment of the vertical axis, into.that small increment,.
also into its distance from the water-section:: the sumof these:
products, being divided by the solid contents of the volume dis~
placed, will be the distance DE, of the water-section, from the:
centre of gravity of that volume.

'The: position of the vessel’s centre of gravity G, depends:
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partly on the construction and equipment of the vessel, and
partly upon the distribution of the lading and ballast, which
circumstances therefore determine the distance GE, or the dis-
tance between the centre of gravity of the vessel, and that of the
displaced volume.

These several conditions having been determined, the con-
struction of the vessel’s stability will be as in the former cises.
Through the point E, draw the line EV parallel and equal to
the line PQ; and, in EV, take ET to EV as the volume im-
mersed by the inclination is to the entire volume displaced ; or
as A to V. Through the centre of gravity G, draw GU parallel
to CH, and through the point T draw TZ perpendicular to GU.
‘GZ is the measure of the vessel’s stability, when inclined from
the upright through the angle ASH.

The weight of the vessel and lading is found from the fol-
lowing proportlon :* as 1 cubic foot is to V, the volume dis-
placed, so is 5% part of a ton to the vessel’s welght which will

therefore be = 3; ton.
~ The arithmetical operations required for ascertaining the sta- -

* According to Mr. Cotes, (Hydrostatics, page 73,) the specific gravity of sea
water is = 1.03, when that of fresh water is = 1. And, since the weight of a cubic foot
of rain water is 1000 0z. or 62% pounds avoirdupois, it will follow, that }he weight of
a cubic foot of sea water is 62.5 X 1.03 = 64.375 pounds avoirdupois. Mr. CaarMaN,
in his Treatise on the Method of finding the proper Area of the Sails for Ships of the
Line, infers the weight of an English cubic foot of sea water to be 63.69 pounds avoir-
dupois. If an average between these results be taken, the weight of a cubic foot of
sea water will be very nearly 64 pounds avoirdupois ; and. the weight of 35 cubic feet
of sea water will be almost exactly one ton. According to the tables published by M.
Brisson, the specific gravity of sea water is 1.0263, when that of rain water is 1. By
computing from this specific gravity, the weight of a cubic foot of sea water will be’
64.14 pounds avoirdupois. 64 pounds avoirdupois is assumed as the average weight,
in the ensuing computations.
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bility of vessels, by the methods here described, are far from dif-
ficult, although they necessarily extend to some length; in
order to give an illustration of these rules, by applying them to
a particular vessel, I obtained, by favour of Messrs. RANDALL
and BRENT, eminent constructors, a draught expressing the form
and dimensions of a large ship,* built for the service of the
East India Company. According to this draught, the vessel is
divided into gg vertical segments, by g4, sections, intersecting
the longer axis at right angles, and at a common distance of
5 feet.+

The Iengths of the ordinates entered in the annexed table*
sufficiently define the form and magmtude of each of the 34
vertical sections ; it will not therefore be necessary to represent
their ﬁgures by separate drawings, since the constructions and
calculations founded on them, for inferring results in any one
section, are similar to those which are required in the other
sections.

The greatest or principal section, which, according to this
draught, intersects the longer axis at about 6o feet from the
1st section adjacent to the head, is represented by the figure
BAO (fig. 31.): BA is the breadth at the water-line = 43.16
feet. BA is bisected in the point D; and DO, drawn thi‘ough
D perpendicular to BA, is the distance of the keel from the

¢ The ship CurFNELLS.

+ Mr. Brent, jun. obligingly took the trouble, at my request, of delineating each
of these sections on a large scale, and likewise of drawing and measuring the‘equidbis-
tant ordinates necessary for calculating the areas thereof, together with such additional
lines as are required for constructm g the measure of the vessel’s stability, according to
the principles delivered in the precedmg pages.

1 See Appendix.



288 Mr. Atwoobp’s Disquisition on

water-section = 22.75 feet. The line DR = 22 feet, is divided
into 11 equal parts, and, through the points of division, 12 ordi-
nates* are drawn, parallel to the line BA, at the common dis-
tance of ¢ feet.

The vessel is supposed to be inclined round the longer axis,
at an angle of go°, and the line NDW is drawn through the
point D, inclined to BA, at an angle ADW = go°: proceeding
according to the solution which has been given, by measuring
the line DW = 22.6 feet, DA = 21.58 feet, the area of the

triangle ADW — 31;-5—8—;5—3-&
ménsnration, the line WA = 11.55: this line being divided
in’to:'sixﬂrequal parts, of 1.9e5 each, if ordinates are drawn at
the poinisi of division, perpendicular to the line WA, they are

found to be as here stated.

= 121.92 square feet. Also, by

. By computing according to the

prginates. Numbers. Products.| Rule1r. from the 7 ordinates given,

a4 == 0.00 1 0.00 | of which the two extremes are—=o,

b = o0.15 4 0.60 | the area of the curve space AW

¢ = 080 2 0.60 | = 2.95, which being added to the

d = 043 4 1.%2'|area ADW=121.92, the area of

e = 0.38 2 0.76 | theentire figure ADWh=124.87.

f = o023 4 o0.92 | By similar calculations, the area

g == o000 1 0.00 |of the figure BDN¢ is found to be

' _ = 133.68.

Sum 4.60 The areas of the figures ADWA

L common interval and BDN¢, being measured in

== .642; and the area each of the g4, vertical sections,
AW D = 4.6 x .642 == 2.95 | are found to be as follows.

* The numerical measures of these lines are inserted in the table of ordinates; (see
Appendix ;) the numbers are entered in the 12th vertical section. It is not necessary

to express them in the figure.
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Areas of the | Areas of the
o] ABWS | BBNG
Square Feet. | Square Feet.
1| 42.86] 2361
2 | 81.53| 58.92
g | 100.80| 86.80
4 | 114.16| 105.27
5 | 121.56| 115.70
6 | 121.75| 120.90
7 | 128.47| 125.86
8 | 125.20| 129.82
9 | 124.87| 131.04
10 | 124.54/| 132.27
11 | 124.69]| 132.97
12 | 124.87| 133.68
13 | 124.87| 133.68
14, | 124.87| 133.68
15 | 124.82| 133.42
16 | 124.78| 138.17
17 | 124.20| 132.85
18 | 124.62| 132.53
19 | 128.91| 131.05
20 | 123.21| 129.5%
21 | 121.06| 127.48
22 | 118.91| 125.40
28 | 117.50| 122.66
24 | 116.10| 119.93]
25 | 114.01] 116.88
26 | 111.91| 118.83
27 | 108.96| 109.81
28 | 106.01| 105.80
29 | 101.82| 98.92
30| 97-24 91.71
31 | 92.4a| 7995
32 | 86.g1| 066.06
33| 81.60| 4820
34 | 6835 17.92
8767771870084
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